Computes the Shannon entropy of all grouped values.
entropy(xs:list, [normalize=bool]) -> floatDescription
Section titled “Description”The entropy function calculates the Shannon entropy of the values in xs,
which measures the amount of uncertainty or randomness in the data. Higher
entropy values indicate more randomness, while lower values indicate more
predictability.
The entropy is calculated as: H(x) = -sum(p(x[i]) * log(p(x[i]))), where
p(x[i]) is the probability of each unique value.
xs: list
Section titled “xs: list”The values to evaluate.
normalize: bool (optional)
Section titled “normalize: bool (optional)”Optional parameter to normalize the entropy between 0 and 1. When true, the
entropy is divided by log(number of unique values). Defaults to false.
Examples
Section titled “Examples”Compute the entropy of values
Section titled “Compute the entropy of values”from {x: 1}, {x: 1}, {x: 2}, {x: 3}summarize entropy_value=entropy(x){ entropy_value: 1.0397207708399179,}Compute the normalized entropy
Section titled “Compute the normalized entropy”from {x: 1}, {x: 1}, {x: 2}, {x: 3}summarize normalized_entropy=entropy(x, normalize=true){ normalized_entropy: 0.946394630357186,}