Vision At Tenzir, our vision is an open ecosystem of interoperable security solutions.
Our goal is to break up security silos by decomposing monolith systems into
modular building blocks that can be flexibly recomposed with a best-of-breed
mindset. We call this "sustainable cybersecurity architecture" because it lays
the foundation for accommodating future requirements in the ever-changing shape
of organizations.
To achive this vision, we are building VAST as a modular building block for a
data-first security operations architecture. We are fully committed to open,
standardized interfaces at the core that prevent vendor lock-in, both for
security content (e.g., the OASIS standards STIX ,
CACAO ) and structured event data (e.g., Apache Arrow ).
Our conviction is that this fundamentally different approach to security
operations center (SOC) architecture is long overdue. Conceptually, we need to
shift away from point-to-point product integrations built on top of narrow
custom APIs to an open security data fabric as the central driver of
event-drien use cases. This fabric abstracts away the complexity of the
infrastructure and provides connectivity from cloud to distal on-premise
locations, as well as modular functions that can easily be composed into use
cases in the detection and response realm. Authorized parties join this fabric
to announce their capabilities using and app framework, wrapping functionality
with flexible adapters when needed. Based on a common ontological definition of
relationships between the connected parties and their subordinate functions and
capabilitis, operators merely have to connect applications to the fabric to
yield an autonomously acting system.
The diagram below illustrates the core idea of this architectural shift, away
from point-to-point towards one-to-many integrations:
eyJ2ZXJzaW9uIjoiMSIsImVuY29kaW5nIjoiYnN0cmluZyIsImNvbXByZXNzZWQiOnRydWUsImVuY29kZWQiOiJ4nO1dWXPiStJ971/h8LxemNqX+1x1MDAwNjbed7yAv5hwyCBAZlx1MDAxN/KCJ+5/n1x1MDAxNG5bQiCBLLDk9qfu6LaRkEqqzHNOZmWV/vtrY2PTXHUwMDE5XHUwMDBmzM2/NzbNl5rRseq28bz5l/v5k2mPrH5cdTAwMGZ2kcnvo/6jXZtcdTAwMWPZcpzB6O9//9tcdTAwMThcZvLet/K1fvftm2bH7Jo9Z1x1MDAwNMf+XHUwMDFm/L6x8d/Jv75r2WbNMXrNjjn5wmSXdzmqcfDTk35vcmmGNcNEY/JxgDXahss5Zlx1MDAxZPY2jM7I9Pa4XHUwMDFmbaqL+7Hdk3ZtdFK0mqbVvLPv9r2rNqxOp+yMO5NWjfpwJ96+kWP32+aNVXdasFx1MDAxN1x1MDAwNz5cdTAwMGb7lt1/bLZ65mg09Z3+wKhZztj9XGahj0/fXHUwMDFlwd9cdTAwMWLeJy/wW1x1MDAwZVPfMZPvMIJcdTAwMDKX3+p3+rZ7+X+hyeY14N6otZvQil7dO6Zm1lnd8I55/n1TxHehXHUwMDE2PJyW417NfzFz8mQxVYQxKbT+2ONeYrBfn3Tyf/x336v/vvv3Xvf6XHUwMDFk//7kXHUwMDFmr7Hu8aWgvfhtxteX+LGWk63iqVCntcpOnT3Q3O31x01NXHUwMDE5mGO+OJtcdTAwMWY7/vkr6rTG7nZpu1st1CvXO8S8q/aL2yU1/7SGbfeflz0vLecu8XD39ZrfXHUwMDE2K1Xn5eHmcSe3gvNuYXY8qnRcdTAwMWHdy1xc6+787N6B51x1MDAxN/JcdTAwMThinVdcdTAwMGVcdTAwMWJbqF12quzp7iCH7MNcdTAwMDZuXHUwMDFlreC8O1ZXXl7jXHUwMDAyam+1Sscnu83mfvtqufP+/smzr8dB3XhzdiykIEhzrrXgXHUwMDFm+ztWr1xyO3uPnY73Wb/W9vDhl6/BM7g0MZt5kCRoXHUwMDE4JGHMXHQlnHGxNCZF23FGMYlo7ym/YVx1MDAxMpeJMOm+XmvU72cxXHTrOZjEPMR/hyRCXHUwMDA0XFyDSa9cdTAwMTWfgSSyXHUwMDE4klZpfV4n93tO2Xo1J8Y19emO0bU646mempglPLPyaeHC/1BHJlxccXJcbjR1bKFjNV2z3azBPZj2lEU7XHUwMDE2XHUwMDEw9sdcdTAwMDFdq173s3Bcclx1MDAxYWDAOe39Zdizb1tNq2d0Lv3ti3SwSOLnNJT4KXS24lqopZ2s+FxcKvaH1sm2Uannxkf8vGY9Zd7JMFx1MDAwYlx1MDAxML+foFMhflwiNOLw8HlcIi9LSPyoU1x1MDAxZbbR3aBcXNrjR8+npXqxel5ITvzrXCK8x7Nh/aBrKWNbqqf2RcdcdTAwMWHqMv5ehMeRXGJzRcyVwohjujzhRfdfVn2RXHUwMDA2XGKP0HRcdI9cdEmokDyZK34rwrvcP/tSvltAXHUwMDFhQb5zm/d5umNcXIf6XHUwMDE4QZRpgZd3MWur1lx1MDAxZo2rRy/HXHUwMDBmToHZzp24v6hk3cVYMM5cdTAwMTUqZbqDXGJXKkZRMlGZkO5uXHUwMDFiTy/3e9dWk11tVYx+57RcXDlsJac7hUuF8XXj/KVRPzDvtXN0Ia7GK6C74lH3XHUwMDAxXHUwMDBmT9v90Vx1MDAxZT9cdTAwMTfbz4Ptndv2XG7OmyAuz1xujTJcdTAwMWFcdTAwMWE3Mk5cdTAwMTFcdTAwMTNIL+/i0WaRUVx1MDAxN6fBsFHidFmUKsRcdTAwMTlDXHUwMDAyJ/Lwb8WiJ9tfXHUwMDFiNS7goiCLus1LwKJcdTAwMTKFuVx1MDAxOJiEUpRcdTAwMGLBlvax5vndUFdxqbvfL7Vqw8ZRtZLrZd3HZqLGtGmUXG5cIpEmmCbysYQsmmuOJFx1MDAxZViN4uu1XdiuXGbxw/PNRXJcdTAwMTZdXHUwMDE32yXI6maG7ZhcZnVFJommXFzFyJJG919WXTFcdTAwMTg0pkx3XHUwMDA0MS1cdGw/KEta+mK6W8BcdTAwMTlBuisloztcdTAwMTWaI8VYK6Qggll+dDRnXHUwMDE3+lx1MDAwZodFKVx1MDAwZZxcdTAwMWJn9/zIylxyjstcdTAwMTn3MaUyxnZYg3+B4+tUg8bunbX3SLdfXHUwMDBlS1x1MDAwM+fx9ViNL+yBkZzu1jWIeXove883XHUwMDFk+4ycbV/eqZN9QsbfbFBcdTAwMTCit3BXJIRzhGO4YnT/ZdRcdTAwMTVltthOMcFcdTAwMDVcdTAwMTb8XHUwMDA3xXb7heMvJbtcdTAwMDWMXHUwMDExJDu3eZHO9ebcc7yLS1x1MDAxNepd1K1cdTAwMDHCXCJG7iQ6lzTtXS2j1nq0zVxm+Fx1MDAxN6CIysO9XG5cdTAwMDKkpzHVatrdOFx1MDAwYjZmNcwndF5cIskpx3BpqXzFXHUwMDBmXHUwMDFlXHUwMDBmUlx1MDAxNfQ+zFx1MDAxNFx1MDAxNSpWYmXKLb7Gy0aOYTtFq1e3es1p9/9dtrbMyPfEL2uPbitzKI9cYuJcdTAwMWFcdClcdTAwMTlcdTAwMDf8oUz4XHUwMDBla1x1MDAxYYO53G726otcdTAwMWJcdTAwMTGdSJluXHUwMDA0XHUwMDAx9Seo0FxiSyFcdTAwMTT1wDGiXHUwMDExXHUwMDFkY+Rs9btdy4GHe9a3ek7wIU6eVsH10ZZp1IN74Sb8+zZcdTAwMWTbXG5cYteBe9Jp7eL9tOHZ++SXj5//89fco3OhduluYJHeXHR++f+PjT2ShTK7XHUwMDE00NVcdTAwMTDMelx1MDAwNyyCnmilk1XoUVx1MDAxY+Wx5IxcdK2oUj5t+448eapcdTAwMTmhimJJXHUwMDE1p4GWrVxih1RcdTAwMWVcdCRcYlx1MDAwMJ9cdTAwMTBcdTAwMDJ5aTxcdTAwMWZcZsm8QFxcXHUwMDAy6ytcIjBcdTAwMTMzqCSoYlxubuHPgKXRhT3CTX0oh1svZ4BQxu2rvpyHXGKASohBXHUwMDA3oklggjnyXHUwMDEyXHUwMDEzXHUwMDFlIEx3IVx1MDAxNp9DqWhJMNUmglx1MDAwNVx1MDAwNV0sXZOSmmE826ZVgNRcdTAwMWMgXG5A1dT3V1xuUmE2626z1roqxHLtL1xmsoCdOHSwQstjVnRcdTAwMDVLVjFLS1BLQL9cdTAwMDJjIFx1MDAwM//Y2+RcdTAwMDSU4LyUlEoqXFyapCzQstVgllx1MDAwZbTBXHUwMDBiUj5AXHUwMDBiXHUwMDBlIURcYlwiKEWulcxcdTAwMGVSXHQhueRYxckoZFx1MDAxN7SiqypcdTAwMDJaXG4hTVx1MDAwNYcnh1x1MDAxMUNMMY95fLjl70aA9s/hVlxmLKWSSVx1MDAwNa1RiFx1MDAxM1x1MDAwMv+lXHUwMDA1W+tWWKHG+3vntNmuXGa8qM/8grGeYJQghWKUwkSX9WVcdTAwMTW83OxtXlx1MDAxM3j4ILhIsNZcdTAwMWHrQEtWXHUwMDAzVuBjeVx1MDAwNqzEXHUwMDE1oiCUMPbkk4dWMo+0JpxphLjSvqKlXHUwMDBmtFLQbEZYnOG+7KJVnMiPaoIlYlx1MDAxMJ9jKVx1MDAxNV5Z4Fx1MDAxN1x1MDAwYjGlW1x1MDAxYy2gXHUwMDFiOVeCqXl4XHRdXHUwMDA3wSl0I4NcdTAwMWXHTP5cdTAwMTloXHUwMDE1br3ulpsx3FXhlSThqSmtuEA4zmyQ6OkxmYUr5JtcdTAwMGL2hlFcbueJXHUwMDA2X+CcXGL4YT2ANVx1MDAwZqFmRmRcYmZMgzbQcUpl/1x1MDAwMERyU1GYy0ntXHUwMDA1XHUwMDAys8fzwGDNYin3uUZ8T1x1MDAwMJpGXHUwMDFj3/HJXHUwMDAwRlx1MDAxMFx1MDAxNvz0o2xQwpPliC1cdTAwMWbLRZd9Zlx1MDAxNV80XHUwMDEyeeVcdTAwMDJcdJFcdTAwMTi5JbnTYLOuzDdcdTAwMTUyz4ElKcBcdTAwMDdcdTAwMDTovuGsqMy3XHUwMDEyXHUwMDFhVDEjPyzHXHUwMDA0rlx1MDAwZeFcdTAwMTBcIm6DtKRIal+24+sy35xI5PubXHUwMDE22KwvpZRcdTAwMGK1SndbZd7bl61cYlxuXHUwMDFiKSD4lSRGLWV0pVxcVoFHKZCNXHUwMDFjXHUwMDEz93FTTmlA5axcdTAwMGJ4MFx1MDAxM3mJKGFYKVxm+kXMTXbPZrexJFrJn5bddkMvTuC+kZJcdTAwMThcdTAwMGKEqG8oKFx1MDAxOfJEV3NcdTAwMDXbIKVWbsFcdTAwMDGVws2x/4HYXHUwMDEzbpjutkLwXHUwMDExJHSuXHUwMDA016B5sD/sWoQ90WVLWcVcdTAwMWWMJc1DeE4l3CvIZy+I/FLR40Fe5HC/UpxTLWJVeWdcdTAwMTd7Ylx1MDAwNFlTokehlYmeXHUwMDE4XHUwMDAzaVx1MDAwMc2zJuBJc7A/1CjdbZWaR4RrXHUwMDFlxKk7UyhcdTAwMDbuRFfxZ1x1MDAxN3c0yWumXHUwMDAwZZVcdTAwMTBMfFx1MDAxMe5cdTAwMDSphc/J7cxcdTAwMDFcdTAwMWVccuGW1JzGWYvoj8Cd1CXPlymeNIEn3Cone2Mjz4I54OHrLCCshGRcdTAwMDItjz7R+jmbNcQ6WM6f9lpnXHUwMDA0SVx1MDAwNk6W6ty16uO12XpFu0dHh0S89GhOXflWQpgyrzjF/Fx0iu4jz/vdZpYnWKAl8rx/wEpnjITP4eNIacDDXHUwMDE4qy9G23FGXHUwMDAxKTipIeWFzlx1MDAxNDA9ZZz8oGVfyvulr53VsIA4Z9Y5c9v3edJ3XHUwMDBi5cOdjE20h1xcflx1MDAwMNlunNrji1x1MDAxM2Jdo8LJyHnayuVqp5mPOYhcYrhcdTAwMTlPOI2PXHUwMDEwdW+KeVHGXFziR3NGjalWUlxu36StXHUwMDE0qH+nNuqPds37g8HIqFx1MDAxYzSejW7ZeFhcdTAwMDWXbr1WXHUwMDBlR4iMmoO+uDJY8cS5tlZw3stS8yp3fHNTXHUwMDFiyvH+2ZYxeiX7Lys479HTYaN9W9pcdTAwMTXM3OnWXHUwMDE0rTikv1xurWKUz1x1MDAwZVq35bPzIbdl+YJZol1cZllLLtZ5IdZ/Kl5fkWrn6al8VFx1MDAxNubVXneY6Lxzqdp3xSai1WpcdTAwMWLpS7l11a+f1YrPpf5dfEnhXHUwMDAxzSclRVRrPLieqztcXCQgLFx1MDAwMFx1MDAwNMK3+tJHilLN40qv6bMgs4rQIW3ojJnXeE/MSoKxXHUwMDE2/nnSvrW8Q+WdXHUwMDEwWHO23OzxIKJNNSO5mc1cblx1MDAwMrP2aMPz2dg2XHUwMDFjY2PHuLetmq+b4mqMz+tcdTAwMDa/XHUwMDE28Vx1MDAxZVRATSwg5Fx1MDAxOTUx7+ZcItVFaDKTXCJcdTAwMWM+J5lRQdyi3lx1MDAxOKVpkVxclLp7hGUzOc0r7s4wcdP0RFx1MDAxM6+j3oSGVHmfxlx1MDAwZlx1MDAwMlx1MDAwNVaCXHUwMDE599FAgZDBXHUwMDFheFZrzFx1MDAxM1x1MDAxYXj6au9aXHUwMDAzU1wiiH/lnpRU/af8csncZrQjbEyNpSqG3SmM0G2A/3xOJW2e8Jm7XSq9+WC0mLVdbJ899luHQ+WMbivnKqRcdTAwMTVcdTAwMThjJjAmUksmkZTrqvSv930s+GWDuVNH594s0/vOL///8aGHhk+axFxiPFx1MDAxMf7GqFqLlqtcdTAwMTmFXHUwMDFlyfOCcPSxXHUwMDA1x1EyXHUwMDAwPO68XHUwMDBlXHUwMDAyps28+pJcdTAwMWZcdTAwMGU8XHUwMDFjU6qJ4lx1MDAxMrPJvytEntbR6L6+e1XYOaheXHUwMDFh7bO95/HJ6fG8ZqA8YlSC+Hrf2LpKSf5A4Fx1MDAxMSo8ZVx08Tx4nZDLpyyj49mMXHUwMDAyXHUwMDBmxSzPXGJcdTAwMTFcdTAwMTAmYXAvXHUwMDE5rJZdXHUwMDFm8OA8QphcdTAwMDNbcvAhrFx0mzeGi+U8JEKaKVx1MDAwMor0j0Ci4IjlYnBcdTAwMTD15yqqnHebPXl3di3qlX17WFxiXHUwMDAzXHUwMDA3XHUwMDA02l0jSlxiV1x1MDAxOIl11bimXHUwMDAzXHUwMDBl4Sbkbrk361lcdTAwMTlaKG/SeVx1MDAxMC0gUuCg/dTyKiU6SZVRsOBcdTAwMWNcdTAwMWUooIWWiFxiIL+5YOGJXHUwMDE4XHUwMDEyaNiKXHUwMDA0S15rirhWQL9cXGpcdTAwMWRcblx1MDAxYr6G+Fx1MDAxNpl4h1x1MDAxMOgtTrVcdTAwMGZ0flx1MDAxNIRcdTAwMTiPV1x1MDAwNbW/86ovLsc3LeeqUT2ohEFcYshcdTAwMGLQppIpjigo8TUtXHUwMDBmk1x1MDAxMoTkQs1psnfWkmLCSfRra1joOv6TIJLGXHUwMDE4y4mOVbM5YDozkuOPXHUwMDA006jgXHUwMDEwQnFwS1/5bFxu4zhHT85hY3DcXCJccjSuyvNjVVx1MDAxY8hcdTAwMTUs4p/Bd9ZEnjfBcNa7Z65cdTAwMTB6I5089F04OHR1XHUwMDAy7jo41mj5STHRZpFVXHUwMDA3XHUwMDBmlGhRmfZcdTAwMWH+WmmUdKA2Ldr/XHUwMDE2b8JZQESrfVx1MDAxM1x1MDAwZVx1MDAxN6HzXYlSwCdx1jSOTrpk1MOCXHUwMDBlljKDYnAvikE2pVpcbtE8LOyIXHUwMDA3W1x1MDAxY4nLl52bh/2bl+t+yNrDfzKFJqjcyFxmhdJQXHUwMDA3x0wgpFx1MDAxOVUxXtJcdTAwMTFpXHUwMDE32fRwXHUwMDFj1Mgy2Yo+XHQpVFBEXHUwMDE1PPdcdTAwMWbEoF/+8tRcdTAwMDVEtOqXp8qImkLKiJA0RuFudHIyky5GMkeiXHUwMDEyKUYl9uVcdTAwMTNTIFGrcKP6ufZe9aWy15NXVqW/+/pcdTAwMDPj0Fx1MDAwNGWKS5KoXHUwMDE3XHUwMDEyrYtEWSiJUqZcdTAwMTRTOkaiKdosMurg2eJQilx1MDAxOFx1MDAxMpyo1Mev4lheQlx1MDAwZf3qwvxcdTAwMDU8tOLCfFx1MDAxZfFGXHUwMDBmKrCWXFzQ5Tk0OjufSVx1MDAxN2MzmZ60OZQq+CNIujX5XHUwMDE3rfthr2VcdTAwMGVKd1tcdTAwMDftm7vq7X593Pl5XHUwMDFjmqAkPzNcdTAwMWNKQ0d/lTtcdTAwMTZKWIxVsqPNXCKjXHUwMDBlni1cdTAwMGV1146VmVxiRL+ORL/6daxcdTAwMGJ4KPbrWMNrK2REmodTQlx1MDAxOYtTXHUwMDAyXHUwMDFhPVMno8VcdTAwMTVSizxoQoQo0pRRPrf2fO3FXHUwMDE1c7hcdTAwMTWrRcVcdTAwMTSKMmhcdTAwMWVGqVx1MDAxN1N8ylx1MDAxNVddXHUwMDE56lx1MDAxNoZcbiZcdTAwMTSXXFwxKcW8t/rkia9kU0ryyVx1MDAxN2hcdTAwMWPYdu324mqXi+HOyc3l4elBiXfDyjiYxO7KQ1x1MDAxMHlcYib5MmtcdTAwMGZ9nzKOeWWia6vakKFVXHUwMDFiIE41XHUwMDA3Y4xcdTAwMTFOR3dhJqWARFnT+lx1MDAxMGNcdK5Snn/bOGHoQnfrt3f87GK7t3dzJ+9rP0/rJ5gm++6bqWt9XHUwMDFlqvWx0sp9MVKMQadou8ioh8+I/XTrNrhcdTAwMDbucpew+pZcbuNbvIx6XHUwMDAxXHUwMDExxX5cdTAwMTl1RCF1xNveXHUwMDExUkprXHUwMDFloy4qevp8RsU+RlTkJdOYXGIsMJNcdTAwMWFP+1uW1T7nSlx1MDAwYiRjzTbPji+uXu0rrlx1MDAwNcNcdTAwMDJcZlx1MDAxN7mTc9cm9l9cdTAwMWVKTr399NreQ3UpT9udo9x5yGJ7iFx1MDAxMo6UdFOgIEd9L1v+f7FcdTAwMWZX7OvQXHUwMDEyTuJOXCKQWKnll9mL7sJMSlx1MDAwMc0yJvaZXHUwMDAwflx1MDAxMCzh4FlCra/Z5W2uerGviXX2elZgjdtD2/l5Wj/B0jXvrpm61lx1MDAxN6HRPGdSMFx1MDAxYaf4JdosMurfXHUwMDE5k/rUre3iNP31Lb5O6rvvuv9Kqb+AhoJS321epG+FSn1cdTAwMWUq9DWT0NNxdP5zzbTG1NLt49Pn60br6PJm++WTi9VcdTAwMDXfMLbG6k3uvptcdTAwMTFcdM4wZ1xma1x1MDAxNnxcdTAwMWI2we6y/VhyokjUq89MIeVcIs9rXHUwMDE491xi8SWZdc7qtUxB9EVJXHUwMDFjYk22OvYqXHUwMDA0fPjcx+mTfa+lpH1dXHUwMDE2OH5a0v76fYZNYzAoO/CIP8Bw88kyn4vzrGSyuVx1MDAwZT1xZ9dxzFx0hv7z65//XHUwMDAxq55Z7SJ9SOAR TIP NDR EDR IAM SIEM Security Data Fabric TIP SOAR SIEM NDR EDR IAM
The network of VAST nodes forms the fabric where communication takes place over
a pluggable messaging backbone , such as Kafka, RabbitMQ, or MQTT. In this
architecture, VAST assumes a mediator function, with a backbone-facing and
local-facing side. On the backbone, VAST implements the security domain
knowledge and analytical processing power to enable composable use cases, such
as routing security content to detection engines, or executing security on top
of the available telemetry. On the local side, VAST bi-directionally integrates
security tools, infusing them with relevant data from the fabric and exposing
their data and services to the fabric for other tools.
The primary communication pattern of the fabric is publish-subscribe, wrapping
request-response-style communication where appropriate. An example scenario
looks as follows: a network sensor publishes structured events to the fabric. A
detector subscribes to this data stream and publishes alerts back to the fabric
on another stream. A triaging engine subscribes to alerts and requests
vulnerability information to create prioritized incidents in a case management
tool.
OpenDXL might appear similar in many ways. The key
difference is that we do not want to prescribe MQTT as fixed backbone. While
this may work for some scenarios, in many it does not. Large SOCs often use
Kafka as their high-bandwidth messaging backbone, and every public
cloud has its own streaming and event hub implementations. In addition, we do
not want to burden operators with rolling out another message bus that
abstracts the infrastructure complexity. Our position is bring your own bus .
VAST uses what is available.
We demonstrated the concept of a pluggable backbone in Threat
Bus , which onboards data to the fabric by
converting it to STIX and then routing it via the backbone.
Now that you know our vision, let us level-set where we are today and describe
our chartered course to make our vision real.
The SOC Architecture Maze Today's SOC architecture is product-centric: SIEM harbors all data, SOAR
executes workflows and calls APIs, TIP manages security content, EDR raises
alerts from the endpoint, NDR from the network, and CDR from the cloud—all
served with metadata where possible. When combined, voilà XDR:
eyJ2ZXJzaW9uIjoiMSIsImVuY29kaW5nIjoiYnN0cmluZyIsImNvbXByZXNzZWQiOnRydWUsImVuY29kZWQiOiJ4nO1dWXPiypJ+71/h6ImYp1x1MDAwYrf25b5hjDdcdTAwMTZjwFx1MDAwYp474ZDZMftqe+L+98mi+zRCQkJis9ynXHUwMDFkJ47bSIiiKr/8MrOyMv/v28nJ98n7oPb9Xyffa29cdTAwMTWr06qOrPn3f5jXZ7XRuNXvwSWy+Hvcn44qizubk8lg/K9//tNcdTAwMWFcZuLLd8Ur/e6Pd9Y6tW6tN1x1MDAxOcO9/1x1MDAwM3+fnPzf4v+2z1x1MDAxYdUqXHUwMDEzq9fo1Fx1MDAxNm9YXFxaflx1MDAxY1x1MDAxNlxcOV/O9XuLz1aacIwwWd7QXHUwMDFhn8HnTWpVuFq3OuPa8op56Xs12+pOK7g+se6edK9fiL013lx1MDAxM8uPrbc6neLkvbNcdTAwMTjWuFx1MDAwZl9leW08XHUwMDE59V9rXHUwMDBmreqkaYbleN3rXaP+tNHs1cbjlff0XHUwMDA3VqU1eTevIfTr1Vx1MDAxZnPwr5PlK29mvtny78U7XGJyfHay3+mPzGf/XHUwMDE3WvwsP/3Fqrw2YFxiveryXHUwMDFlJVRNi+U985/fSC1cdTAwMWbbrLVcdTAwMWHNXHS8xvTyo2qLSSVcYiuipebk11x1MDAxNfNcdTAwMDGDq+pigf/X/sV71Z9f/K9cdTAwMTVfrjn++cp/lkM196ecsmKXXHUwMDE32zLG2sWZVaGnrYu7On5nXHUwMDFm5YxsNX59pVx1MDAxNeGa1N4m339d+M8//Fx1MDAxZduovHF+iVx1MDAwN7NYq3+LXi7GlatEZ/1jrdGoP1x1MDAwZvrcm8ezmTx/LVZzr/cyNWh27ibiLthzf/5rOa/TQdX6Id9YSEGQllxmw5L+ut5p9V7hYm/a6Sxf61del5D4Zlx1MDAxYrBcdTAwMGKLi+laXHUwMDBiQ+ZcdENMXHUwMDA01YJxTVx1MDAwMuPQf1x1MDAwMVdx2LQqzemoXHUwMDE2XHUwMDAxJHJcdTAwMTnnq1ikfFx1MDAxNyxORlZvPLBGIPJuPDLuxiN24ZFcbi1cdTAwMTXBUoSA44psuHDnJ2pUY6RDiNpyQfu9SbH1sZBcdTAwMTax8uq51W113lfWZCGDMD1FmJpX+1x1MDAwNI5r8JGLZ7CVm1x1MDAxM51Ww1xi6fdcbnyJ2mhFfictoKRfN3Rb1aqdZyowXHUwMDAyXHUwMDBinjm6XG5CXHUwMDBm/VGr0epZndLKXHUwMDAwffG0gduoJ6hgxpWWXHUwMDE4scCYXHUwMDFhPZ3TXHUwMDFlyj3WzkqS9mPX/eLj02O0uc3OZVHgNolcdTAwMDThNFx1MDAxNJj2zm3P40rdKp+3kldcdTAwMWR2o5qD+sXwfro7tz1cdTAwMTbZw3iQ7OU65CxVrrZfXtOl+z1w23kxPVx1MDAxYj5VijeD92J3fJd8uphayb1xW1iFsyW3UeJcdTAwMDVDTlx1MDAwNUNEieAw9F+/iFJcdTAwMWK2zcChiY1cdTAwMGI3XHUwMDE43cSmiEBaIFx1MDAxYcbO/CrEdmlV+/3BUZltXHUwMDAzOTiZ7edcYnegNqW5XHUwMDE3ppiiwG1Ei8CYulx1MDAxN43HVKnzPm/lK/f49Kw5XHUwMDFiX+NoU1x1MDAxYker1Fx1MDAxNtuR2uq4TurEjSZK1nDbXG6P/sBcdTAwMTM4XHRcdTAwMDSsXHRqc1x1MDAxNT6B3OrMuixcZi7Ht93ceUWV75Ot8bVcdTAwMDdcdTAwMGI5yC1cdTAwMThZ4OX3Plx1MDAxNFko4klcdTAwMTaSUKlcdTAwMDRcdTAwMTYosGD7z0dEyYJLuSra+HBkgcVcdTAwMWG2INQp3VxcMColsoVKXHUwMDBlzFx1MDAxNqFcdTAwMDRtXHUwMDFkW9hcdTAwMTC6yVxyqlWmI1ibkyTctzJJdt6QK+9cdTAwMGLOXHUwMDFiXHUwMDEzO1x1MDAxMTlIY4PadblDzoHuQFx1MDAxZsJGhE76kFxibFx1MDAwM8SCR/3y+djD6G3cXHUwMDFkdiZE3E5r92fD9EXE6Vx1MDAwM1x1MDAxM0es4UCukV5cdTAwMTNmIC5rTFLGKZNcdTAwMWVRvyVLXHUwMDE0VDlXmfa7rNC+fOq8t5tcdDzt/aXFj8QxmY/ZXHUwMDFkKV5bRVSuxkpoel7LlYM5UJHhXHUwMDE4gT2NJ4xcYlx1MDAxMliKXHUwMDEw4u8/IVElXHUwMDE5hlfFfyeO8Vx1MDAxNH9bXHUwMDAwxsdcdTAwMTnBUmKtOMVcdTAwMDeQ/8+loeBOS9lcdTAwMWFZR3VZNmhtJ/ssxrdcdTAwMDPj2MPXzn0mTDCWilx1MDAwNbfrRmeD2/OP1yS/rTRo4u70XHUwMDFhluE02owjo8U4MN9cdTAwMWP8RLbeXYlcdTAwMTbjZFx1MDAwN69cdTAwMWaFaeXuXHKrbPGp+PSWamDxxVx1MDAxOFx1MDAwN1Ev6cdcXFLJWFx1MDAxOIPLf0JcIso4klx1MDAxZYVxeCDGYVx1MDAxOGukOV1cdTAwMWaK/ltcdTAwMTBOulx1MDAwNtNe61x1MDAxY5VzNuhtJ+f8NcRcdTAwMWRoR1x1MDAxMOlcdDyMXHSVQvDggbKn1ttcZvFRu3ufK/fK6Lkl6/Qq2rzj9nTEZ/JcdTAwMGVcYrpRdVx1MDAxZXHnaPHOuFLJXHUwMDE21HyYkcUk7lx1MDAxN7rXmfvMzVx1MDAxN+NcdTAwMWTqzTtcdTAwMWF+MLIvxSbx95+QiPJcdTAwMGWnylx0gMMwXHUwMDBmo25cdTAwMDC4mUcjgiXQz9/Y1SmWrlx1MDAxZY9KO1x1MDAxYtS2K9BmxrdcdTAwMGLnUM/gXHUwMDFhVoBIRnSInLpcdTAwMTdSxi83XHUwMDE349Pbl5fm9X05W51kr6PNOVwiWpyDuZJCXHUwMDExSdaHr6NFOolpa5rM8fO7j35rNNDtKpVcdTAwMTP1xUiHeco/IVx1MDAxOJzOMCaX/3xElHNcdTAwMDR1XHUwMDAx4EDeTqAsNnD2qaBI29blb0c6yUQycXNU1tmguJ2s82OAu9CO8Lb1YMaxgDlcdTAwMGaOu0a5WcZX3dl4dDe6o6NipX79WP9qtHPEXHUwMDEwXHUwMDFidadcdTAwMDRcdTAwMTCmXHUwMDExliTiMba16twmXGLTm1dcXC2rwaSdPothPUpWO/NkXHUwMDA0aYdcbs9cdTAwMDCzXHQ+XHUwMDBirsKkma3/1luIPzme+Ns2W35cdTAwMDTY4lx1MDAwN3J0mFv815BcdTAwMGVjSiBlT9c4oPiTzeJcdTAwMWZcdTAwMWQuKrZcdTAwMWHd4272bNDmLlx1MDAwZmgxwFx1MDAxZLiIa++wXHUwMDFiXHUwMDEzSiNNQ1x1MDAxY2doVMel9/txfvSYXHUwMDFi3V9x3nxM6ttoc5F7u+dzXSDAXCLGXHUwMDA0RZyLfqYjtruxWP19IProMXd53cufxqaZL+ZcdTAwMDJcdTAwMTHvXHUwMDEwXHUwMDAwXHUwMDA2o1x1MDAwMHNcdTAwMTE8XHUwMDAy4D9cdTAwMWZcdTAwMTF1gSReZaNcdTAwMDM5QCpcdTAwMThcdTAwMTdxiZTGXHUwMDA0/433e7KZk2y/WuuMj0s8/qrbSTzLQfri7sdRhzXA096hN6Y4I1iHOPHjf6YjkrSDXHUwMDA1jsP3xJxojTjiji1XrOMwXHUwMDA3VIH8aa6ojVxynJisaGJcdTAwMTHLXHUwMDFmky/VSr364sbkutNALu9cYtxcIslcdTAwMTSzpSFcdTAwMWQ6pVx1MDAxNG9cdTAwMDO18cRcdTAwMWFNTlu9aqvXWOW6n1x1MDAwN69/iPlgJFGr+PZcXFx1MDAxZvdcdTAwMTOxWzZ+hlx1MDAxMX/YKFx1MDAwYsBZmZpRxlBcdTAwMWPGQ1x0uOJaIMG05sx2W8NcdTAwMWGYuUFxbjKdXHSViGHBidu6rfWqm0flfyphdVSIXHTKqVwiXGYmTFx1MDAxMLk8vvVrVFx1MDAxOK1cbo9UrlF1rPEk2e92W1x1MDAxM5j+fL/VmzineTGfXHRcdTAwMDPfZs2qOq/Ct7Jf+z5cdTAwMTm1XHUwMDFjNubAPHRVaS//dbJcdTAwMTS9xVx1MDAxZr/+/b//2Hx3jNnu/2b/XHUwMDFkWlx1MDAwYinvw7yw5oKFXG6A5u9cdTAwMTK5dmGWz3/MZ/N6dm5cdTAwMTVGt62IayGE4yDYWisuXHUwMDE5I+BcdTAwMDSuqCF4KW5cdTAwMDJSIPqcaftcdTAwMTnMXHUwMDAzayFQjlx1MDAxYXOEQHxcdTAwMTVC1Madf9lcdGbUXHUwMDFjvJOl9/KVtVJn2uw/V5/xR1Fl57eJTF1MZ3lcdTAwMGb8XHUwMDFi9GMpOGeMXHUwMDAxurntrp/wl3Fz/lx1MDAwMsGacTCmXHUwMDA02lIpXHUwMDA1VpWgblx1MDAwNKxcdTAwMTRcdTAwMTHgvGjQTES4xlx1MDAwNIpSMbA0uVx1MDAxMkIjSdjvpZFcXPJcdTAwMWFSQXm5J9zbOyFcXFx1MDAwMuGESX/uvGbzXHUwMDBmvF5u6sRbtVWrv2eGxfZeI2XVvlm8fSooYtM5i3covWOsrG69IMTXJECvc89dxpBcdTAwMDRjjUpCdzs8todcdTAwMTjYVtpoK3ckVcrs11x1MDAxMfE5abPyJZwuh1x1MDAxOYgvijZcdTAwMWPE9K4xgCkxh6ZYiJOYlF5n727n9yUxbKjGa49VynhcdTAwMThtsnfUzznYQUyxhtCVe9NFXHUwMDBiqVx1MDAxOJZcdTAwMWVbnUeKYM0mvNLVI1nsN3lcdTAwMWb47mJoPbzaOM6po39dOFgxXHUwMDAw3+f+XHUwMDBlXHUwMDA1dECFeuJcdTAwMTBpxuVKtu8mXHUwMDFj+i9gRENuYHavQvGAXHUwMDA3R8m6kz3ug6Pg6oDddsRzoySEoK0jsODnRs+siXVSrLRqIGQnXHUwMDBm/dHrXHUwMDBi/Ku5ntNcdTAwMGVxenRcdTAwMDNVOGnOY7i7MJ/NWnDlllwiXHUwMDA1blx1MDAxNMfB93hqz4WYXHUwMDFl4t79+cU5LqBhtTScWtFmPvvW5lx1MDAwMbNcctZcdTAwMTHfmlx1MDAxZFx1MDAxZUxcdTAwMTCRaPNcdTAwMTnSqlx1MDAxNMVcXH3Ec7jQzldJLtN9uixcdTAwMWY7ya3bbjZU7bR4f86tXHUwMDFhmZ6ezoYkXHUwMDEwP1x1MDAwNuCbsGpgO75R2DPbxlx1MDAxYypcYlx1MDAxN2n2n4+o0o2iznSbw+zx4ECJ1VxugVx1MDAwN6U52pTjtoX8fy4lXHUwMDA196lcbkfd2tmgsZ1cdTAwMDRU2IVrpE9uXHUwMDFiXHUwMDEzQjGAXFxwuNVcdTAwMWXH7Vf88nDav25N8qVcdTAwMTme5jIs2lxcw4+S2GZcdTAwMWaHXHUwMDBm11x1MDAxMKIox/ZcZo7oUlxyeUzoRL886M8+ulx1MDAwM2bF0l3yXv9aVCOV8Fx1MDAxNH5cdTAwMGWsT5FcZuHa+E9IRLlGsuNQjcBu+V+TTqBMRVYs9KZ0gt+Ya66ng/dcdTAwMTX6OFx1MDAwNuP4620n4/w1xFx1MDAxZHhHce+kUqqZyShcdFx1MDAxMSp/XHUwMDFi8mz2tj2Zi1JmXHUwMDE2u3y9fLm9XHUwMDFiRJt3XGI5XHUwMDBl8axzctakVDPBpDSM/1x1MDAwNZjnOdPWmXmho5U1zaZpXHUwMDE5ZL/6xZhHKU+zXHUwMDBiXHUwMDA2YawuZVx1MDAwYsFuLN3pOyFcdTAwMTFlXHUwMDFlYqPWg/o4gepcdTAwMTYoRlx0U+pvzDvZzD9cdTAwMTNXJ+cjq1ub949cXL96g/52J7OtXHUwMDBl1Vx1MDAxN4OeySRcdTAwMTh57zBcdTAwMDH6XGKj9nKUmzDov4VcdTAwMTBJXG5cdTAwMDJuiFx1MDAwYqJMXHR8cDw4XSUku+xcdTAwMWQ4fYTqOIGPx5JSjZDJ5HHCU0pcdTAwMDRcdTAwMDa5xGE2n7ZcdTAwMDdcdTAwMWUjmobZWLHNU6D0kcDpYyiOMJeEYVxmrlxiplRS5k5qc2eLXHUwMDA1Slx1MDAxN/FcdTAwMGZzr1xmglx1MDAxMq3oXCLyrFx1MDAxOGaSuMeASVxcglx0oYhcdTAwMTBIa6rpXlx1MDAxMkbWJIU40kZW3n/AhFx1MDAxMbeELt//zf47fGIt8y6ZR1x1MDAxOZGai1x1MDAxMNvc/p1AXCKphYhCcamkQoIqbnaZXHUwMDFkdjHWcZhuXHUwMDEwPvBcdTAwMGIxyJdwjOyYqbUwXHUwMDEwSYXGYdJJPoH/951bXHUwMDBiXHUwMDFhXHUwMDAwSSmNXHUwMDBlXCLUJFx1MDAxZrpzWFx0imvAXHUwMDA2ZlRRXHUwMDA1KGF0O63k38niZDWzXHUwMDE2pEVzzLUgWpvQwZrcOrQqPFxc7kMvRSeRbX+ptVx1MDAxOFx075M1XHUwMDFhXHUwMDEzxlx1MDAxOVxuXHUwMDExXHT2z3yIrFwiMqJCMOOSXHUwMDEyyl32UFx1MDAxY3GMpKljXG7/qaMpos3mXHUwMDEx1kiaTWHbqZevbFx1MDAxZlx1MDAwNVZcdTAwMDJcdTAwMGL7iIBxRFx1MDAwNaNcdTAwMTSB/+bWTDKumdJApNQku2LmXHUwMDBlPuzXXFxcdTAwMDLFRKlcdTAwMDBTXHUwMDE1IYVANTG8JuNcdTAwMWbMJS05XHUwMDA3W4ogzmFsf8ylxZhcdTAwMDJuWkm/nl7alFx1MDAxYUbBPbf76lx1MDAxOcs8JZpJVXmzkq27u9Pu1VZ5tkcsyODoP0Sk87NcdTAwMGbXf0i4zFwizrhcdTAwMDZcdTAwMTTyMMpn70HBSVN8lNuXmZer+9Lra/+cXterld0zXHUwMDAzU/1ad5pOXGam6fFFrKFmheZdmq9/7HZtgo6xzSW1J1xcTO9cdTAwMDEwnnjwfFwi/4mOaLBR2GrILVx1MDAwMKPxbnnpvjl8NNjZWaXAWlaIXHUwMDFkrVXQXHUwMDExo4mlq7x9/lx1MDAwZVx1MDAxZUHcoMSdXHUwMDExRDO8XHUwMDFkXGJI+Vx1MDAxND+lXFxwTElcYlx1MDAwMoo93qTKafLObmV18FBM166TV92vRUBM0l3QtCNcdTAwMDGB6Uc0aLJP7X/XzJ/3rvK8k+9OZ1x1MDAwZlx1MDAxN1x1MDAxZJ65vWVcdTAwMWW53n83XHUwMDAyUj5JRtRcdTAwMWOMXemXtlx0Lv5cdTAwMTNcdTAwMWRVXHUwMDAyos5cdTAwMWWsTNNcdTAwMDNSULAurIojjNixwurHZaDiTeK4aXtcdTAwMWLUuKtcdTAwMTSQXHUwMDE5ny+eap1OazBey0CM2aKTrrw9Tlx1MDAxOFx1MDAxM1wiRNuH81x1MDAxNzV+XCLNbo6lrdhTf1Q+z9PRNlxmdLyiXFzMXHUwMDAwXG7sVlx1MDAwNW62UtSWX2TeT1x1MDAxNVx1MDAwMlx1MDAwZlQq7LOrTFx1MDAwNatX5Fx1MDAwZSc1eJxcdTAwMTOtXHUwMDA0XHUwMDA2uVx1MDAwNo+f2GpcdTAwMDDaXHUwMDBlbsSZljBG0HPcXHUwMDFjT2dOXGJcdTAwMTJMpVBcdTAwMDG2ntOVziR7g9JcdTAwMTfpxKn6sHrdq7e2XHUwMDE1la1nXzle4G6dXHUwMDEwc5vb6uxfKnCoc0WvmUoj17o5K9W7fes9XXhcdTAwMTN1vVVcdTAwMTPhI0owR3EpsdJaXHUwMDAyXHUwMDA3ai5XXVx1MDAxNIZ4XHUwMDFjKEBgJaVcdTAwMDRcdTAwMDaVu1xi8n9ValVWtdxCjFx1MDAwMSZEXCKuNUy3XHUwMDA0UJE1QqziTEmMXHUwMDE0XGZFc0aQ6zSSKUumYDnRXHUwMDAxhPggx3G3oqE971x1MDAxNFx1MDAxYy5cdTAwMThcdTAwMTfzXlXz417P5Vx1MDAwM7/Zf4dcdTAwMDY0U56bmUKaUtFcdTAwMDJcdTAwMDVP6qNv7cRHvdXF6ZvX8TR5VSyKSSHikGY6rqSZcvD/XHUwMDE05nj1NDyj3NTnUEiagDXn3jtcYjtBXHUwMDFhVl9cbrkohoJcdTAwMTleXHUwMDFijJBxc6aDmKwnjoU9XHUwMDE38a+YnpJwh+Sbytr9XHUwMDAx9DFcdTAwMDDtuaSLi67F3Fx1MDAxZpy9jUzNXHUwMDA0WJkshN92XWaqVbzOnt/cJlLWYHJ583zrVXA8MnhcdTAwMTZgvyFcdTAwMDH8i1x1MDAxOKhLXHUwMDA3Q1Ow7jjDXHUwMDFhg27jgnDveju74FnHXHUwMDA1qGvENNi5iPJ1jWWxiGOTdFx1MDAwM+ZcdTAwMDSMXHUwMDA3tJBy4lx1MDAxOWuNQfFwsuloyVx1MDAxZkBcdTAwMWaFoT1cdTAwMTfV/LiXc1+I5j6RXHUwMDE4XGY2XHUwMDFjiFxiXHUwMDBlbnSflkRcIlXMp2Ji/Iw/hvK18ZF/jjiigYKJyXVgpvpcdTAwMWJ3Zlx1MDAxYlx1MDAwMZjjglx1MDAwMkzAklFA0Hon99GbollcXCPQ2DBerpQpXHUwMDBi5ca0jnOmKTaZXGJgTlA3opXCJnRG12+7/UH04urxKNpzSc1PzLma+1x1MDAwMrRfS1x1MDAxY1x1MDAwZWJOMFfBs3Yu0+8zdvOE72ov+fHk+YLy/LuOOKDBi8ZcdTAwMTJTjlx1MDAxMDHpXHUwMDE2fPVUXHUwMDAxQyquNTP1XHUwMDE3XHUwMDAxLVx1MDAxNHtvU+yEZ1x1MDAxNDe5ZYSBXHJAlVbaXHJnk/KBwKhcdTAwMDbdw7Vp1bbGiSZg4Wks/lB0JFx1MDAwMO21pouLrtVcZlx0aL/YrmDeYbHFdlx0XHJcdTAwMTFcdTAwMThLv1x1MDAxNJ6q5Oo+qa4u3yrJZFx1MDAxN93eXFxGXHUwMDFi0pzgOKVcdTAwMTgrXCKAglx1MDAwNV61ujFhcUQx4ejnj3fqiyVwjVV9IX2EXGIvuErEXHUwMDFjaPTIXHUwMDFhXlwisyBcdTAwMDZcImHdJmYvyYJsV1x1MDAxYaQ4v7v62lx1MDAxMV4pPT1IYtLjMJch2lx1MDAxNSSf55l3edt9fMo/zVx1MDAxM+WH04tsPeJBXk5ZXFyAUa1cdTAwMTFcdTAwMDdBQsghy0yBXHUwMDFmYCpcdTAwMTTCZFx1MDAxMEG1t1x1MDAwN1x1MDAxOUCWXHUwMDBmXHUwMDFj5FXg55p2L1x1MDAxYtuOhFx1MDAxN+M/9HTyZWK8QnlbnKYxXHJcdTAwMDOTK/jOY+069tC9yWVJm7SylWaRNVI1r3pwkYE0jZtojyZcXFwi4H5HmrjU5lCdoCZcdTAwMWXHTDWPw0B6XHUwMDFmQV7zRqKo1n8gXHUwMDFkXHUwMDA1SH9SlFd4p4eCVlx1MDAwMYckzD5s+uxRvFxcnFx1MDAxN1x1MDAxZfql3Nmk+NyWtdws6nhGcSS5OYDGXHS1l3D+gWdcdEYg0lxi3GmuuP3g/j7xvJ8gL8cgXHUwMDFlxo38g+dcYuD5s4K8UniXNdLmyFx0fGhwo1t0RGba6rB88oGm3oaZ2uy+XHUwMDFl8W1YgEFcdTAwMWOMXHUwMDFlLZTSXHUwMDE0jCOH0S3AZZNgXHUwMDE1aVxuXHUwMDA2OfbOq9iJn/dcdTAwMTDhXHUwMDE14Oubtr5cdTAwMWJ7K/1B8+9cdTAwMWLg9Us1J5gwsFx1MDAxOEKkmldTmfvLXFxNNO/p1Vx1MDAwNTk/SzaSmYhcdTAwMDd4jVx1MDAwN41cdTAwMTTwL4VcdJbChtfF+zmNY4AymEvmOtFcdTAwMDcyt/dcdTAwMTHghWFcbmlcdTAwMTLV/+A5XG54/rz4Lvcu+aCEovBpIUrc6rdBeVr9QNP5XHUwMDA17l1OMslcIjmbR1x1MDAxYtIoLlx0R+DGYFx07qdJS1jBtDKuXHUwMDBlRppK791XXtFcZn1+aFx1MDAxN5k2YlRt3LLptXPDNr6v963eNPtcdTAwMWF7fs48nVW+eGjXp1x1MDAxMy1lmFxiZO/VubFcdTAwMTlXXHUwMDE2j1x1MDAwN/nJ/HI2q3TrXHUwMDFm2ddKaVxcjrZcdTAwMTRjs1x1MDAwZsGBlijBWkvmNDNBh1x1MDAxOJtfUqko54x4x3ZcdTAwMDNcYvOhXHUwMDEzeDFDXHUwMDE0/F+9yXPcQpD/cNPJl1x07krkTU2g/7jAYVx1MDAwZTZcdTAwMGVH9Ter1T6l49nza2PYXHUwMDFl6fq1jDioaZxSZUCtTE6+o/FcdTAwMDdmXHUwMDA0KFx1MDAwMWxcdTAwMDW4gVx1MDAxM4y8jc2dIL2P2C4jXHUwMDAyrM2Nkd0/eP6NI7tcdTAwMTJ5XHUwMDE22SVcXFNKwqTvWlP6XHUwMDEwa13g2STRbtyJx3HjfbjfdnR7XHUwMDA3s2nKq416JFx1MDAxOFxijjlcdTAwMGJcdTAwMWNSXHUwMDFkN6yNXHUwMDAw1ZxcbqFcdTAwMGZcdTAwMDLmPVx1MDAwNXal1lx1MDAxNDTwplx1MDAxNII/cP6tXHUwMDAzu8pzp4aDXHUwMDA0M1x1MDAxNKZo8EtcInnRbNPucyX20mlWXHUwMDEwmz+3ptHGM5hFXHUwMDAwV3DXXHUwMDE0YFx1MDAxYXxcZklcdTAwMWR7NUSAnlx1MDAwNV6WsDBcdTAwMTJcdTAwMGKfYNBO/LyP7F2jmMzhvz9cdTAwMDZ3XHUwMDE0XHUwMDEw/VnBXe69U8MxYVxirIbgXHUwMDA35lx1MDAwNp3k1XN2NulcdTAwMGVf6lx1MDAxN/n6baac76ejjWgwt7lipomgOUBKiVKrgFx1MDAwNl1cbkjnMOWSgTWuXHUwMDBl5EPvJX2XmLid/MPRXHUwMDExQfRBw7v+5YG0rVx1MDAwZaM7RYpQXHUwMDAxJmfw0Jh/s/FIllx1MDAwN3K0rmX2kj37bF1r+1x1MDAxY7/WtUJcdTAwMTlbwFx1MDAxZb/9hPpAZ29cdTAwMTf5UvVG8uL86rKVzM/mZ5fLROxcdTAwMTXpXG5TXHUwMDFmKH+XyLVcdTAwMGKzfP5jPpvXs3OrMLptXHUwMDA1q1x1MDAwZuT73PqgfVnvPet5PX1avr6t59lbv1x1MDAxNuy5LlX2SXWHiL3FhLPAv1x03Oowvc381y+iZYeYdlZcdTAwMWRcdTAwMTJcdTAwMDcse0fWNHla07pWa4Y9yp189lbIcjm371xc25+OKrXxyX+fXFz16iOgy9G0MllcdTAwMTGGQzew3UBcdTAwMTjrXHUwMDFi2HqNelx1MDAwN1x1MDAxYZTCe4dIglHHwd5cdTAwMGWeWdhNTOqX+CE55Fx1MDAxZlfvL9d1/jCxLqJNg1hcdTAwMTBcdTAwMDf8ONqNXHS96uTpNeW+3O1cdTAwMDU5XHUwMDE3WFG18cToY+b1eUqGb7dWNzN9flx1MDAxYeeHzd7dkZs8ZUoyy4unXHUwMDE3Z7V7Uptwnio0s+VAdFx1MDAxOVx1MDAxNfpcdTAwMDEz0KePM1x1MDAxNUwyXHUwMDFlwlxm9J+QiPJcdTAwMGaW0iH/XHUwMDA3ai+4Lqy6puIqXHUwMDA3l4BcdTAwMTG1abt+XHUwMDBiXHUwMDAwfJWyeKledeFnraejXHUwMDAzlcbboLudjPRrjLuQXHUwMDBm8yRcdTAwMWZw1DGYfppcdTAwMDRcdTAwMGatWLF85fFufHtXZM1Z7OMqO5hcdTAwMGZPo00+XHUwMDEx41x1MDAxZYK4aVFgXHUwMDBm2UaXfO7zeTacXFyW5ctcXDfLncI01ngufS3yUdLT92Em4ckwUGDx95+PiHKPVC5cdTAwMDBcdTAwMWOIfFx1MDAwMrVR55pTysXGXHUwMDFk+d+Ye3K1ydFbXHUwMDBibtDcTur5a4i7MI/0zqExXHUwMDFihlSTXHUwMDEwrW1LuVx1MDAwN118qUx6ma58XHUwMDFm3E5b1btsxFuqk4hRXHUwMDBm1lx1MDAxMlGtMDqA2bd36rl7Yoo98Hqy0mdZdfYm6GRw8bWoR1x1MDAxM+/mtmCB01x1MDAxMFta/rNcdTAwMTFR4nHuYlx1MDAxZIp32LrEMLf0I7PfgOXGym+/MfEkO/1p9ai0s0FtO2nnx1x1MDAwMH3h5tm5TVx0zzBcdTAwMDNjSKqVmkibXHUwMDAw51x1MDAxZvaPJN1QYvpcdTAwMTNik3FcdTAwMGXflVx1MDAxMrFcdTAwMWFyYIyYrFx1MDAxMW24V1C1snN72L5tXHUwMDAyxzVcdTAwMDbq01xcKYSoTVxc/4KmxIhp41x1MDAxOK2FZmQwXHUwMDE3sG2bf9z5xN62TTCwg1x1MDAxMOaUgX4nck3jRlx1MDAxOSdgKytYV2pKgf/qILak1UBt21x1MDAwMve4jKH4olxit/lAhlx1MDAxNUPUNSaQM4W5aS+mXHUwMDE1laY6rmtMX7qZpEtel2//Zv9cdTAwMWReQ2nvqpOMXHSlXHUwMDE4lsFVVOmqcj5J44I4zzzUh+wh95Zqv0dbRVx0hEwqKqgmXHI+oLZR8Vx1MDAwZvtcdTAwMDDHYb4pwZIpQnxcdTAwMTJRd1FQxHNcZr9cdTAwMTSWe+dcdTAwMWNcdTAwMGJTP1B4nG+KqoJyQsrjylx1MDAxN1x1MDAwM2vMc1x1MDAwNVx1MDAxZG9cdTAwMGZcdTAwMDRWX1x1MDAxZpYg71xmXHUwMDE2glx1MDAxNFjxmoVoL+KvhCOJ2Jizw1wi282D9UphsafG2JLN1iCRM9NcdTAwMDdcIlxmXHUwMDEw9+6bpujrzfVF4yb5fju6vC7N00/50vN3u1x1MDAxNP4uKSy+z30ssofxINnLdchZqlxcbb+8pkv3e3iuf/P27Z+bZKzYTaben85cdTAwMDfdwXsug6uZOd7Dc1x1MDAxZlx1MDAxZW5ewY9Cg9zZ2Uura2Wsi/dqsOf+paI2kMHSbDhUipAkntXMXHUwMDE0XHUwMDA2NSfCWCb++IhotMJZ1Z6ww2VcYvE1XHUwMDExXHUwMDBid4JcdTAwMTDYoFIzRY9odYRcdTAwMTG05XpukyNUvEplj5dcbrSBeV09yczgtjdcdTAwMWKw8kaT5GDnK6aDo6lWuLhT6XT2vX2XmJWvYrHhnX6LttVAnFaDOkzc235cYtenLybWipvEeY/A95GshkIxI+eDylsulmp+JHKz28y4P9zdaoggXHUwMDBiR4XVsM+5XHUwMDEyYdLuhFx1MDAwZVF113/9XCLKavZCQD9cdTAwMWE+o1x1MDAwM3bbXFzHa+4zX1JcdTAwMTNcbtzmUVx1MDAwNzqKtFx1MDAxNjzCnqk1rMr7v3ue9Ebpynv2XHUwMDE2aN/AXHUwMDEyToZbXHUwMDE55y5M591/k5q+hlxuh0BYs1Tj5dNHPYxcdTAwMTVSV7hUtPhcdTAwMTXZqkb78fBcdTAwMTUtnqPI9KNcdTAwMTKf21x1MDAwMLo+PLeqkzztVu7lhZ5fjCbJq7M/PHdyQJ7T2DOwLCTDkoWoQOS/fFx1MDAxMaU5TFx1MDAxZJlcdTAwMTZE74REX5bDck2i05qjzVxcco1oKDB+XHUwMDE1mruEb1x1MDAxZLvvd6bd2km2NrFgNNa/e+ZcdTAwMDSFobqjXHUwMDEy31x1MDAwNtJwXHUwMDEy34aR++LPe2PHu1x1MDAxNjyodMmAXHUwMDA3g1x1MDAwM9A/nFx1MDAxNElcdTAwMTY0+zqcSU6ViVx1MDAxM1x1MDAxMb6a90GR2TBcdTAwMDRcdTAwMWRcdTAwMDWo09K0M/GE5i5cdTAwMWI7mDlcdTAwMDaxXHUwMDA2pc6BMFx1MDAxN2q1kGDTYFx1MDAxYXHjNPBOzz42hFx1MDAxMaEwreDUXHUwMDEzXHUwMDA0v7ntXHUwMDAw6clyT9hlNGyxrbRm6+jYm0veUrS47Fx1MDAxNqDlXHUwMDEzv9l/h9YhXHUwMDE4nuulREBcdTAwMWNNjdswXHUwMDE5Y6l+rTtNJ1x1MDAwNtP0+Fwi1lCzQvMuzSOuRbiMXHUwMDEzRLkyXHUwMDFie0LR5f7vXCJ/hSvTU9ikt5hcdTAwMTZmztpcZnvaXHUwMDFjjptcdTAwMDN5iEiFXHUwMDA0V5it2Vx1MDAxY8ZcdTAwMTjHTUlOQVxyXHUwMDFjqEDuapiUXHUwMDE4XHUwMDAxUSzicduA6Syxx5tUOU3e2a2sXHUwMDBlXHUwMDFliunadfKqa9dcdTAwMTQ/M1VYXHUwMDFjRFTBcLji4FxiMdu27Ioy0bCGWFx1MDAwYkylXHUwMDE2YFx1MDAxZLn0RiD1dV89Y5mnRDOpKm9WsnV3d9q9aq9cdTAwMTlcdTAwMTS3r1x1MDAxNddSe1xmXG6kijPGidFvXHUwMDE07nZcdTAwMGbri+2Se0qy+Ym5hTikXHUwMDFh8yzlor07n3NkeoLj4PGAXGa/p1x1MDAxM9S54rzcuO/fpVx1MDAwNs30wyjqOkzHOVx1MDAwN0hcIoq4JM5Sa0jHmUBcdTAwMTRzwkypXHUwMDE34V3HZZfN9HVb6Vx1MDAxY5tcIm+mjK/GhGrt2m1cdTAwMTKEmpjob2P4XHUwMDFjMsXlcOVaVu52L1pIlHpcdTAwMDVcZrjyPFx1MDAxNCixYDhcdTAwMTRKn94nXHUwMDE3hftyNSvI5X15Wq3XXvH1Nij1LLdU7Ztl2ydMXHUwMDE5VXGgXHUwMDFmJZ3nMzTw048m5rsh03pBiLuRubYqsSuOx5k2XHUwMDE1lXdcZuPtoTTS8Vx1MDAwMlxuhdp40O95hFx1MDAwZbZOTvfZXHUwMDEyXvkmziDBr9FshS7p01x1MDAxOVx1MDAwZXNm0mpRcENcdTAwMWXdoHLv5lLORKo6v6mw1DVt77fZ4/7hxVx1MDAxMYmD+4Sd+Fwicrf4uCesVFx1MDAxMFgxYkqg6lD7Tl9cdTAwMWNWZyBYlYlcdTAwMTHLSOBqOZytgKVtXHUwMDFllfOEh5E1MHVDxLm79DUjWVwiW3hpzM/KVvpl1utGXHUwMDFjV6A44pKQVX760d6bm9RpjVx1MDAwZUVcXFwiXHUwMDEwcVx0XGZuO8VcdTAwMWV9146EMFx1MDAwMbMkjoaw+9a49dLqmFx1MDAxNYxcdTAwMDTEbOPZXG5jwFDKXHUwMDBiZFx1MDAxOFxcRVxmTnJcYpTph3wrPz8vUjTt5j/Oppl0qSpcIo4yIV3VwnY8t+uFKlx1MDAxNVxiVeC8a9PP0KNG7m9JXFyp3qhVaXZr+y7Qsi2sbOPZXHUwMDBlVoj5nIZnTGGmgtuEr7jwoErNcm92N2HVm9vG6ONhv11i9o+qXHUwMDE4k3HwLZGTusBMjGvBQMB3a3PkXHQyvLZcdTAwMWPfmiRBgjiRWG6qW0sqd5cl69xqZStcdTAwMTVwy9PD0nB081x0dWuPaEUuKuNVWjCy1jhcIoB0jGlbUHpcdTAwMTaSx9iczVxcyW/ahMrzy/lL7rZSXHUwMDFly1xcp1/P55uWNdkqfemYgVx1MDAxMITiYk0khFx0XHUwMDEyx1qTXHUwMDE1XHUwMDE3zolKKli9XCK3ROW6lCY3KjVcdTAwMDFzTsuNvVx1MDAwMuf8etwpkeGExYo36epLsyjxZ/RcbjxcdTAwMWUoizfJk1x1MDAwNFx1MDAwMOI9Koi0XHUwMDBmaDs4Uu80JqI1XHUwMDAzXHUwMDAzKETcZFwi36qP1VTl5WFekLm3/MVprbDfpktcdTAwMDdAozl6jFxiXeHCReBcdTAwMDSpOGbMxGW94Vx1MDAxOKSxpydcdTAwMWNZoFx1MDAxMFxu1lx1MDAxNCMuNjbWblN+nr5qjG9S85HqplKPZHg/+K3h+Cu0cZLqXHUwMDAxLGp2iEVcIuSyXHUwMDFjly84PfNcdTAwMTM09jRgmTaJXHUwMDEwYZqu+Fx1MDAxZsWL5s6e7Y5Nxdx3TGNyI9E+vF9FPMF6kUh7tMX+elx1MDAxYnb7yFQyZzpcdTAwMDQxra5cdTAwMTTBgtv6XHUwMDEx/YZ5Sv9Y+Vx1MDAxYoU9+e5Jw8Q7p1x1MDAxZoPuXHUwMDE3nIQ5XGaaeFx1MDAxZVH1mGs/XHJF9rneKpLH+9JWJUOPuX9hy5deZDDu2rjBa99iTYdcdTAwMTXmRrpEknFcdTAwMTPdXHKB9C9Op4mOIcBe4+S//91LvdUqU89NXGZ6bEZdP7StoMapN9KQ4Fx1MDAxY5MwKX9cdTAwMGalYuzl7OLt/akw7pe62aG+7UR9R4M4WHXHXHUwMDAzNF5Ao+tcbiSuKy6hpCmOdehA64p8uaHGmVbH28FIlTLRMFXNQH7A6NtP3vtuXHJcdTAwMDbFXHTMzq95/j5r1ean61Z+8WPev5h2I+21xfL859t//lx1MDAxZpB24/4ifQ==Spark Hadoop Security Content Yara Kestrel STIX CACAO Sigma ML Models ETL Data Science Workbench R Jupyter ML/AI Framework TIP SOAR Data Sources & Infrastructure Endpoint Network Cloud SIEM Legacy SIEM High-Volume Metadata Database Response Detection Visibility Enrichment Data Scientist SOC Analyst Detection Engineer Alerting & Execution ETL
There are several general issues with this approach:
Data Silos : many security products (especially SaaS) sit in the
path of the data and capture activity telemetry in their own backend from
where they drive analytics. However, you can often only see the distilled
reports without having full access to their own data. Pre-canned analytics
allow for some processing in a vendor-specific toolchain, and an "open" API
may allow for selective, low-bandwidth access. But since egress is expensive,
vendors are incentivised to shield this data from you. A classical silo.Vendor Lock-in : after stitching together dozens of different tools,
you are finally in business, assuming that the strategic alliances programs
between the vendors exactly implement your use cases. If not? Then you are at
the mercy of your vendors. But even when you've settled with the existing
integrations, SOC technology constantly evolves. You will want to integrate
the next best-in-class solution, and hopefully it plays nicely with the
existing ones. So how to avoid this gambling? There is always the big-vendor
monolith security stack: the integrated solution for all your needs. Some
can live with a fully externally dictated roadmap and cost ratchet, others
switch from the frying pan to the fire.Compliance : public cloud solutions may support choice of geographic
region for data storage, to meet coarse data residency requirements. This is
a good start. For on-prem products there appears full control, but is it
really enough for achieving compliance? How to guarantee that minimum/maximum
retention spans are properly enforced? Is data anonymized, pseudonymized, and
encrypted at the needed level of granularity? If the vendor doesn't provide
sufficient controls, a roadblock lies ahead.Aside from these general issues, there are also more specific ones with the
above architecture. This concerns advanced security
teams that strive for full control over their
detections. These teams operate with a data-first mindset and bring their own
tools for analytics. The SIEM functionality rarely suffices to perform the
desired analysis, and needs to be ETL'ed into a dedicated analytics workbench,
e.g., Spark, Hadoop, or Snowflake. This happens typically with recurring
over-night jobs, on demand when something is missing, or fully upstream of the
SIEM by putting an analytics-capable system in the path of the data. But since
SIEM has all the parsers to onboard data sources, this now requires
re-implementing data acquisition partially. Few SOCs have the required data
engineering inhouse to scale this, which leads to buying a second SIEM-ish
system capable of the analytics.
SIEM Offloading is a valid use
case, but it's duct tape from an architectural perspective.
Security Data Fabric We envision an alternative architecture to overcome these issues: a security
data fabric with analytical processing capabilities built in . In other
words, we decouple security data acquisition and content execution from any
product and make it a modular function of the fabric nodes.
The diagram below outlines the abstraction of the fabric:
eyJ2ZXJzaW9uIjoiMSIsImVuY29kaW5nIjoiYnN0cmluZyIsImNvbXByZXNzZWQiOnRydWUsImVuY29kZWQiOiJ4nO1daW9cIkuy/X5/XHUwMDA16pGe5klcdTAwMTcm92W+YfCGbbzgledRq1xmXHUwMDA1lFlcclx1MDAwNVx1MDAwNo/mv79IuttcdTAwMTS1XHUwMDAxZnH5Tns0t22gIKmMXHUwMDEzJ1wiMpZ//5FKfXMnPfvbP1Pf7HHFajnVvvX67U/z+MjuXHUwMDBmnG5cdTAwMDeeXCLTv1x1MDAwN91hvzJ9ZcN1e4N//uNcdTAwMWZWr5eZXZWpdNs/rrRbdtvuuFx1MDAwM3jt/8HfqdS/p//1fJbV73d/fMz04dlHYaKV/+FitzP9XFzMkZRYc8TeX+FcZvLwYa5dhadrVmtgz54xXHUwMDBmfTt/uy01jsvEwc1cIspcdTAwMTc1oY16dva5NafVKrmT1nRNgy58j9lzXHUwMDAzt99t2ndO1W2Yz/Y9XHUwMDFldVW/O6w3OvZgMHdNt2dVXHUwMDFjd2JcdTAwMWVD6P1Rq1OfvsfskTH8lZYyoyTlmHAsMaZcXL4/bd4gTbjOSIG4RlxcXHUwMDExzYmivqXluq1u3yztb1hcdGY9zVx1MDAxNvdkVZp1WGGnOnvNU7VSq3pe8/rzXHUwMDBiz1x1MDAxNtWwnXrDhYdcdTAwMThRXHUwMDE5zDhTSnBBsVCzfVx1MDAxONjTLcCKMk00YbM9NJ/XO65OZeFf3tvUqf68TZ1hqzVbonli3yM/s2uGvar1Y6exkIIgrVx1MDAwNGJyts6W02n6367VrTRDhGPgWn13z+lUnU7df4ndqc6e+SW4M6E+nsqVfu2T406WieyhdX4xsuj3IaLvN9FIVrcyNOtPI9hMLSisXHUwMDE1RFx1MDAxN0tOPS+qWz3zbXBGYI5cdTAwMTHWRFxiyrWSP1/xn9nXsFx1MDAwNm6u2247LtyAi67Tcf2rnn6jrEFVw7aqId/J+9w3t+/8XHUwMDEwvvdX9Mybzlx1MDAwMGt+Zr+lZtIw/eP993/9ufjVQamZXf6H99+fXzegK/p2xfWt1qMvlJL+h9/1haSYasbUTEZcdTAwMTbpi1tRv9+/bk1enYvKLd7LN0aDXHUwMDAyTra+XHUwMDEwsz9/6Fx1MDAwN+T76Fx1MDAxOdbR9CdeXHUwMDFm1HCN1EhQXHUwMDFmUFx1MDAxMqJcdTAwMTGw98N+qVx1MDAwMEEwYlSsolx1MDAwMjww+7nrOICBgGZ4v+bfXHUwMDFlafu5jzVmXHUwMDFkXfWOXHUwMDA2l+3iQUU93OacQeH2m1cs38XLtcfut/cn/vNn3Nu68mDYLzYvb9p1elW+OW/Vh8Jccn/bXHUwMDFmXGY3e99folx1MDAxZaPOJFx1MDAxMoisoM5iUTP9WqGAQTpcbjBUMkoxwWJpvMTf53m8NKxKY9i3P1x1MDAxZjGY+ihcdTAwMTXzdSDj9q3OoGf1QS6DsMFCXHUwMDA0YUOoXHUwMDFmNVxcMColYmhcdTAwMDXQfJw3V1x1MDAxNbTZfnY7bsl5M7fUg3zz6IHVdlqTuS2ZSiDcn5JdXHUwMDE59mFvUjl43dxNerJcdTAwMDY2fPpcdTAwMGZdPXddtuXUjbR+q8BcdTAwMDV2f06QXVx1MDAwNyzO91x1MDAxN7jd3uzZXG58glx1MDAwNW/YP15Gm3f7Tt3pWK3rqIWuQUvCY6T6UKZcdTAwMDXjXGIzsrxcdTAwMTV7cZG+649cdTAwMDftl5ZLxOXQvs2/nFx1MDAxYyablSTJUKVcdTAwMTBTnGGtXHUwMDEwxXOIW5OjlFC2XHUwMDE2QbBpXHUwMDFlgjXtx5qkjFMmOVlcdTAwMDFrXHUwMDFiJ6jTt9FccilcdTAwMTWsXHUwMDEyeqimr9HwwC4+XGaXXCKoZYhcdTAwMDSsydnX3lx1MDAxNpFcYkSjRFx1MDAxY0xZpVx1MDAxNOV0eSaJvyFJZVx1MDAxMlx1MDAwNOZ9jJhvj1eoXG6KOlx1MDAwZYg6Nv6y4sDpX4ZXPMbHXHUwMDAyXnmw+lY4l7C51y7PJW2nWvXqc1x1MDAxZp0sUMN+Opmub1xyXG5cdTAwMDH3PlxuX0SCmy2WJ5B+vnd58NbM8ctKnWZv9lxusFx0e8kmXHUwMDEw4meQ5Fx1MDAxMFxiloorKlZcbnJsnEDOes23q2HlZozVWalcXCqP9+tYfC1cdTAwMDLhXHUwMDFhR1x0OKNcbmtcdTAwMDQssrSIx9+PhPJcdTAwMDfRPv7YXHUwMDE1ffCl6INhs1x0Xlx1MDAxNv/rsMeJXHL31G7tlEBcdTAwMTaoYT+B/FriXHUwMDFhXHUwMDFjXCJwTHRcZlNCXHUwMDEwWsHbLzvjXHUwMDEx4v3n9m3xofOAvjuyRo+TTSPxfoj4TFx1MDAxYVx1MDAwMaFnsDD6qX7IoFI5u1KvL6eylMPdq3bh9Pb0/GvRiCCRNIJcdKNcdTAwMTg8PbY8j8TfkITyiFaxUr49XHUwMDFlYTQo6UFcdTAwMWXRiGBcdGTyV/RCStfH9zslkVx1MDAwNUo4XHUwMDEw1DLrW4dBSGQgXHUwMDBiU83BhlvlPPaJPOCn88PB3uXTU6Nw+3BWdc9cbslmXHUwMDEwXHUwMDFj64h8KoOAiyiFXHUwMDAyT2mVsPHGKSQ7dIa5XCI/uHnrOv2efq5S6aovRiE00tXWXHUwMDE4gbdN1fIyXHUwMDFlfz9cdTAwMTLKIFjHSvlcdTAwMTY9kVx1MDAxMElcdTAwMGZcdTAwMGJkgcNNkWZsXHUwMDA1Sf8qXHUwMDE0ksvmsuc75ZBcdTAwMDVq2M8hP1x1MDAxNrhcdTAwMGWJ8MhQMeWMY7XCYUj9ofGAj9ujQf+mf0P7pUqtcF/7ylx1MDAxNLLDWFx1MDAxNlxyXHUwMDFl11x1MDAxM6ZcdTAwMTGs77OCWaGq2bPbw/Mmrj6onvt8kk9j3c9VW6+5XHUwMDA0Ulxi5dFOiCRCc6FWSENcdP/WXHUwMDFmkHGyO1x1MDAxOdcyNpSVWYtCXCLT1DyEXHUwMDEwR1x1MDAxZowpgVx1MDAxNFx1MDAxNutcdTAwMTlKZLGUJ4dVSk69vdvzkVx1MDAwNZo54JlMXHUwMDE3uFx1MDAwNqvwmNQvXHUwMDA1XCJodNvywa16dXA9uVx1MDAxZFxc9O+L/dtjzlx1MDAxYvc5fZlsXok/I/lcXNdcdTAwMDRcdTAwMDBcdTAwMDdcdTAwMGU/+txDktvndjpdm/REXHUwMDE33Vx1MDAxN49cbp2LvfTw9Iu5Jlx1MDAxZfPAf0hiXHUwMDFjXHUwMDEzXCJXcE3i70dCXVx1MDAxM1wi45hli66JWo5buERKz2XN/XVcXJOz09RZt2q3XHUwMDA2uyWSeFXsJ5LZXCLXIFx1MDAxMyxjTkqkoFx1MDAwMiu0fFx1MDAxNDk+PzyhQEt703mnl6j1KIRcdTAwMTD1ZIdQiPQs5Vx1MDAxZFlcIuCbUMqlYKv5/Fx1MDAxYqeQ+FxukjlcdTAwMDHzp/z+XHUwMDE5975v6nXvqn5WeVx1MDAxZV3h0fc8vub50cFcdTAwMDbe9/IgTZ+zperVw5194eZFXHUwMDFknXXfNvC+NZeLXHUwMDE3eaz0pIvssiPKT8753nLvu1x1MDAwNJdyoj25r1viUsJEJMS1ZpIzWM3SXHUwMDEwL1x1MDAxNtt3Z0Q4k9Py9dX34lx0dtoq4UmZini8sOkl2u8gblx1MDAwNuBEh2Q9e9JcYn6dgFxuRLXyxla3w5xCa3DAOfYmY/+UsW/fXCIkLIw3Pekoy+Y85y3XSlx1MDAxZFhPfadcdTAwMTJKoZ5cdTAwMWOPOVxubdk1N4ZAY7Ke525QZIqzd12xYIqu1EMkkjE1kpRcdLVChtrwrVlGeXmSe6vSYVn0T45oJeFRPUJ4Rlx1MDAxMIlNXHUwMDAwkzAyXHUwMDBmLEEySlx1MDAxMo5cdTAwMTlVXHUwMDA0ISZZJM42XFykx1FGca5cYiZcdTAwMDAs+HzpXHUwMDA3XHUwMDFkXHUwMDA2KEhChdhNKH37NXrzb7Z6pVxcSDWcr15u7vrtVcqlXHUwMDAzeze7/Fx1MDAwZu+/q9f8kGjmQ1xcaoLUXG4pXHUwMDEyrauDltV+y1xu1CncXHUwMDFlX+03mq3j6kewXHUwMDFhXHUwMDE5nax2zfZtXHUwMDE0rFxmuFx1MDAwZpxIzbWcXHUwMDFl581uyI9cdTAwMTIgk8mNwFxmwMJsXHUwMDAwQ9GAtVx1MDAwNLZZNVx1MDAxZbA161x0IVx1MDAxZVx1MDAwNCxWM//xXHUwMDFksipg+VxuXHUwMDAyrq6h37Us3/XClZpI4imM2ranWelWndokVVx1MDAwNbmruCCfg9Tf81buf1x1MDAxZjsjx0pVuq2W9dTtW64zslPVblx1MDAxYujusWN1qqmq4bFmp/vasqt1+7FcdTAwMTNKsjLCT91cdTAwMTLJbuqrfIyXXHRVkVx1MDAxMSOBQalgvELEKN5NSSQvY0UzQDyYS6YkJfD/OahcdTAwMTNOM1x1MDAwMpu8XHSw96mUWEVcIn3T9fNcIlx1MDAwM9ZcdTAwMDDFknEqwHQmfthj4EowXHUwMDFh6ErHXHUwMDE0n0/Na1x1MDAxN8mjXGamXGb0JVx1MDAxMYxcdTAwMTJTJa89L/pZJO/ftKBy+2tcdTAwMWFcdTAwMDVcdTAwMDGh2ZRNwD2BfL9NIFx1MDAxNCNErJL0cmm3XHUwMDFlXHUwMDFlXHUwMDBlrovitDm56NuHN4Prxof0xFx1MDAwZW1cdTAwMDIqZIZcIoZcZtszov0mXHUwMDAxwVwiw6imSEilmcIxVcK8olx1MDAxOfqoSSBmq48xXHSUXHUwMDEwXHUwMDEy/FeyXjBsXZOAaU8mx7ZNgqo9slvdXqo9XHLupl5cdTAwMWS38djp/CROQ5ZWpVx1MDAwMl/0z8dcdTAwMGV4sY1cdTAwMTR8RcB+XG6o9LHTgPuYeoJff9zlXHUwMDA0XHUwMDE4XHUwMDA1m/syXHUwMDFmgjvV0eFtgTTSIOTL5yfcZ9nRsHCmclfs5YBcdTAwMWSdNk6tUlSS9Mesgm14XHUwMDAwPCNcdTAwMTlTTMJXVViT+SZcdTAwMDBgXHUwMDE5gTJAgoNGXHUwMDEwxFx1MDAxYlxi/EhgXGYhi9VwXGLYWVxi2FlcdTAwMDDsWINcdTAwMTfCtEY7i4x9zFx1MDAxMPhcdTAwMTCsraFcdTAwMGJWL6DqsdPt2cZcdTAwMTDuXHUwMDAyTpy36S+hUKW7hWr8XHUwMDAyY+G3oFeNiOxtxUC7XHUwMDEz4Y3HLsJg7vWoN9GU5rOjvVx1MDAxYl4sXV87L91kW+bEd76UpmvmKEQ2q1x1MDAxMSHmd5BTgdZM7IOyTy3ByeGhuO6gtotvr1x1MDAwN685p1np5fJLJSn8XHUwMDE597ZrXHUwMDFjXHUwMDA0/TIsY3xcdTAwMDdcdPbQ1lx1MDAwZmzAyo/My5ZcYlx1MDAxNoDoXG54ib3NXHQ9kiVcbvtcdTAwMTDDt5fvQMKaXG5cdTAwMDR71VBDXHUwMDE5SOJcdTAwMWSlYq8oaGHctHyvmumxSKni2CBkqbtuv/lcdTAwMDS/hduPW+lYs0Cp+5kqYrnrUFx1MDAxNItpv0i5MZ/48pgrl897rGmNOTp9sVx1MDAwZSeHg8FFOuE5dZT5OWpL+dlhXHUwMDE0XHUwMDE1UiTKXHUwMDE4V0Sh8OSiXHUwMDE5XHUwMDE15e6OL5T7nL28OrLI4UP+3sm30C+VviNcIlx1MDAxMzUx6JJxS104t6xcIpvPblx1MDAxNen1iSz+aHDubT9CZKDNdtB0jUU2XcOYUkWFt4hrXHUwMDExrOJvdEKpjFxu6ss+SNP1XHUwMDFhr0VCXHUwMDBiL1WVijU2XHUwMDFkilxiXG63/tbC1lx1MDAxYXy3ojyu54td7TSvb1x1MDAwMVx1MDAxZPjZ7WotXCLzXGKk/1x1MDAxNEQwxNUqvlx1MDAxNqm391x1MDAwYi+4WN1/fbPyrrKbvbSbbFx1MDAxZSPUXHUwMDBmti3xXHUwMDE4XHUwMDBlS+ZcdTAwMGLrulx1MDAwNmaN0uIrXHUwMDEwWf7O7oz37de+dVDF1W6HXHUwMDFlp8uvS1x1MDAxMVlyXGIn2nPCXGZcdTAwMTPEuV4hulx1MDAxZn9DXHUwMDEySjiEs11cdTAwMTFOWFxiP6yIlUktOCX/xYRTXHUwMDE49iZzXHUwMDFjslx1MDAwM9pZoL39tPNrieuQj4o091xioVxmXHUwMDBizJZcdTAwMDdf4XmSXHUwMDE1+3eEnlxmLMVcdTAwMGLN587F5X6yyVx1MDAwN/h1R+SznFx1MDAxN4VcdTAwMTnCplN+RKAvWexznlcqd/O8l76pT9zxy81xoXjS/FQ3KvZ9t1x1MDAxY2fcXHRbalx1MDAxY41Xk5egXHUwMDExW6FNVvxcdTAwMDYmlC29X3DLztlSvee0loRSScPrXHUwMDA3/yu48uz0XHUwMDFm2ePUQd9q26/dfnOnnLmAdIIlWPNLjYVhXFzqWvQpNcWIiJWijydcdTAwMTRXs71cdTAwMWJHtdKyk8Vn/cnb9UuyiZMonOFcdTAwMDKDe6qoOZpic5gkXHUwMDAyZ5TEWHDChWZyZ5NfqMpgXHUwMDAyS2KSUVCHMpi5hpmp41C7qYFMfk55YqavXHUwMDA0dm529Vx1MDAxZt5/P3qgXHUwMDFkXHUwMDFk1lRcYlOENF5cdTAwMWWvXHUwMDE3e1x1MDAwZpdcdTAwMTY56rRcdTAwMGVuykfc2XNcdTAwMWFvLOEn2r7hK+uauZHn2SxcdTAwMDSUYefZmMNGa/2p59mkVG45k+ujm73G4eTw9FBcdTAwMGa03sB59naPXHUwMDAxXHUwMDA0V55BW9sqQCTRQUlcZmhRsHMrZGHF3+iE2plC+4IydJtd8klIYCZ4olxyjFxurEpcdTAwMDTfXHUwMDExfa0oa2FW5KpH2tPZfYPU/6SOO7U+8Fl/WHHn5GHbJ9tcdTAwMGKUe/jJdtSq16AsSSMhXGKaU1x0XCJXXHUwMDE4WlG4uCg3TzvEeUqXepbuPJD7cVTT8YQwXHUwMDE2XHUwMDBlXHUwMDE0XHUwMDAxr5uEtW6jXHUwMDE4JJiWPKJcYnhGTnp/74he6Mt2oXjVw7mn0bg3Luw4NFP5PjlSV7fF4Uupqor34rl2LuylqG1cdTAwMTlcblKKr1Jv9SFcbsJKRqb9SyVcdCOrRDri70dCXHUwMDE5XGJr6ZP/LVx1MDAxZFxuhNTAXHUwMDA341x1MDAxY5RpyriMaHKxlvivwVArimJcdTAwMThDLVx1MDAxZufY71SnXHUwMDBl0G5cdTAwMDNcdTAwMWPxqtvPR+9rXFyHenC09Uc452BcdTAwMDKu0H+icD9mspNt5kuTw+7b/ulcdFx1MDAxNTrhZ9JJo1x1MDAxZUKEQoyTRTHGJFDPaGBcdTAwMTUv7rJcdTAwMTO7Wu00rvLPXHUwMDBmOfd1/MWoh0XKvzBFj1xilrG0+Mffj4RSj1ZcdTAwMDFcdTAwMDBsiXuWyoCShGiqXCKGTv5XUE/RdndcdTAwMWZaj1fcfub5tcR1iIdGh9WJXHUwMDA07EmxQtihXk07eWtySNrZ2qT4Urm+ungrJ5t4SMKYR1JTno7kVyCe8vfTh3K7fH9r0edKd0wvszdj/MWIR0W2PyFcYlx1MDAxMUT1KjOP429IQpmHeppcdTAwMTduk3iW68fMqZkrwlx1MDAxNyZC/YWZJ9fqXHUwMDBlqzvlnVx1MDAwNXo70PR/usBcdTAwMGZcdTAwMDGOsEi+4aaeXqFcdTAwMTWS3a+fLk6/P1c6x/XLt5u9Mq6/5s7vN0o3W+gsgObPhciabFx1MDAxM1lOXHUwMDFjXHUwMDE2Y1xillx1MDAxM5vCUk4p31018e6aXHUwMDA0mGLdTrfdXHUwMDFkXHUwMDBlUn170Ot2XHUwMDA29o9GO9mL41x1MDAxNKAjonXtJ5RcdTAwMTQvWOWHkEY9madcdTAwMDFmXHUwMDAz415wvoJlp/ZcdTAwMWZkuteetIcn+1x1MDAxZP39eC83ytVcdTAwMTNcdTAwMGW1RFx1MDAwMVxya8qU5Eitclx1MDAwMPtVkDZyXHUwMDA2zpPTMt0jrcGPrlx1MDAxNOlRtzVs2yl32vfH7U+SgLWl1lx1MDAxOYu2eG/Km1x1MDAwMlx1MDAxNlxiY2BCJVlh6sDzuCZHbq+393ZyvE/xkXNXRFx0XHUwMDFmiFx1MDAxNmhcdTAwMTO9vTJ+z1x1MDAwN8V1y0NMU1wiw8NcdTAwMTg78pJcdTAwMWG3tNU5PrVzsn9d0c713kM6KzflJSlM6daTXHUwMDEzQHdFj7BB03lcdTAwMDdyhZKp+Fx1MDAxYpJQLylNqU+yt1huj1lcYqeEJCdcYoYoVzxcIlx1MDAxM3bTXtCqslx1MDAxNsYpyycnlM5zn1Fmv0DrXHUwMDA2uibPrXJccuqQKLK6nmvwh1x1MDAwNV5h4nnh4pXUXG7f02p0ciNRiThZ9lx1MDAxYXX4mlx1MDAxOOpAfurYVmFcYlx1MDAwZVx0RIRcdTAwMWNcdTAwMDEpKVx1MDAxOVwiVH8qefD8ebmxP74/vy/ktDya5O46reeNkVx1MDAwN/X0U9xcdTAwMWF5SFx1MDAxMplcdKqU5tw04lxcWrLj70dSuUNvttgwnjvQUnE2osBcdTAwMTVcdTAwMDEh2E0/0U1Qx/LuyHFnZFx1MDAwZlxcp1x1MDAxZd02bHupXHUwMDAzsYrXz1x1MDAxZfNcdTAwMGJdgz28x6OB3ixMSCrYXG5cdTAwMWT3n7O3he/PY3w5XHUwMDFh3/UvnGqrm7VcdTAwMTOebVx1MDAxZPA7PreqXHUwMDEwbjesgKzUXGJp49xxNbo5umClvYvT9ttdX6C3yX2z8cW4XHUwMDAzRXenl1x1MDAwNMxfxVcgj/hcdTAwMWKSUPLwXGLX9rnDU1x1MDAwNVx1MDAxYsdcdTAwMWSImHb5TH9cdTAwMWS/Y4XTXHUwMDE3YInUmdWx6tPV7ZQ+XHUwMDE2KN7AOYxvqbFcdTAwMTiLntaCaeRcYmaMMGNErVx1MDAxMLWKr/lNJHdwhjKSUzD1ucRcbs+ngKaJQFx1MDAxOYxcdTAwMTTlhII4alx1MDAxYd39ddM94YnKYMaZUoJcdTAwMGJqXHUwMDFhb1x1MDAwN1xcXHUwMDE0aVrSco13Y8Rtuyl8fIe71KwpfFx1MDAxYfZLYS1cYsgmgpvDZmm7qfeu8DqjNFx1MDAxNlxmlk6BRWDvXHUwMDAyZDpX1reBTvVKSSVcdTAwMDTV4DhcboF1SKd6nIFFK1hcZjxrelxyXHUwMDA3lvSV61x0g/I6u/xcdTAwMGbvv1FcdTAwMWHKbrWc3iDUwGUoulxmXzHw0eHDZ7S4SEed2TfS7dev7NF18WScRmRYUe2P6KhcdTAwMWTO0GY8Q4D6OSFUYeFcdTAwMTkp/ktJRaolsP1rXHUwMDE1+XGjwFxm6CaAfkw1MIUgMjQ2mVx1MDAwMVx1MDAxMCqEMCWcMcGDuso0icdK6kXZ7MPqlapyq71vofPCffO62D588Vx1MDAwZeb91m3edo9vld18a1x1MDAxN3Ny/LbXXHUwMDFkXHUwMDE39eYzP4TQXHUwMDFjVFx1MDAwYvO2Pl3TzJ1aXHUwMDBmYdKNeSRcdTAwMDMzIFx1MDAxNdhzT/B3kXT31eip8Pxyd1m4L1lXXHUwMDE3ztXNW+Mu4dLNVVx1MDAwNvRcdTAwMDZcdTAwMDb6lVxmXHUwMDEz5pvLkiZcdTAwMTSkXHUwMDFmyFlTSVxipoL6l7aStP+tYldZ1VxuMX/hQ4hE3JygUsmoXGaxholZqVx1MDAwNIPAyDJcdTAwMDf+XHRG5Vx1MDAxMWFcbjO8sJ/ZNiR9g3NcdTAwMWQ+XHUwMDA2gG1R2fZmqqSjt938XHUwMDA0N3xFWotEPVx1MDAxMjGDXHUwMDE3TC8wrT29QVx1MDAxN8HeLerr0b41qFx1MDAxZlx1MDAxMVZous1hu7z/oTGJu4S9zHBjpFx0yo2jgX1hUoJcdTAwMTjQXG5HyEz2XHUwMDAxWvF4gVx1MDAxYoU9XGJcdTAwMDBYY4a2XHUwMDA04JaGxU9lxlx1MDAxY95cdTAwMTOwNVxix4J4XHUwMDBik3/N+jZcdTAwMDdcdTAwMDZgj/9G/ZdAfeSmT59cZmz35jBcdTAwMWaZIVx1MDAwMrfcMIfHtFtcdTAwMDT5l8pY4WJBXHUwMDFlpSs52e7Tu5JcdTAwMTZO0iHPMuCzXHUwMDAxqCVnOEj0SGRcdTAwMTQynXcloYB3XHUwMDE27W2vg3idXHUwMDExoNNcdTAwMTHTSsGn8dByTJFcdTAwMDGDlzJppriCbvLEut6jYEgggvjCJsG/XHUwMDExn1xixKcjd938XHUwMDA093tTkFx1MDAwN9ctkuZNXHUwMDBlJpdeYlvY2Vx1MDAwMzU6XHUwMDBmJdix/VpP99NcdTAwMTfto8P+U8Ixz0hGXHUwMDEzXHUwMDAxRK9cdTAwMTA2XHIu/DRPkJmWTJRcdTAwMTTmzlNcdTAwMTRcdTAwMWTgXovmWUYj0OmwYK5cdTAwMTTjKqRcdTAwMTBOZzjTXHUwMDE0S/C35Fx1MDAxYyB+Ylx1MDAxZVx1MDAxNsfAy5Wf4cT+hnxqZZKP3HLzk/bv9qZcdTAwMTDvLVx1MDAxOfIjXlx1MDAwYlx1MDAwZSpI4eVccvtqu/7QLo7x2/dzRSZccnbbbNu3XHRHPFx1MDAxOPZcbuBcZs66RERj7msgSShYX1x1MDAwMlxiXHUwMDFlmVx1MDAwMzzhXHUwMDFkfrVRxINegdtNXHUwMDE44YwqXHUwMDFkNmBcdTAwMTmTjERKUoxcdTAwMDTXiCFcdTAwMTZw54Ux7Fx1MDAxOfpt139cdTAwMTHIR+359MnAbq9cYvnYXHUwMDEwtYjkeYKxVma+8vI8f4JOXHUwMDBlz48n+b125XrsnDZcdTAwMDQm51x0d+eJxFx1MDAxOSBwIbVcdTAwMDDDXHUwMDA2M+VcdTAwMDN9TIx6iSmpO4hRU8WIXHUwMDE2dHGI+ordjF7o0ciqZEtFq305OVx1MDAxNdm/eIiaROenYlwilVx1MDAwMH9u+Vx1MDAwM5jnXHUwMDE3+lRcdTAwMWU8fT9pXHUwMDFjvFaHhcnew14pm3DhVixcdTAwMDNaRYJKIYj4kzJMgHpcdTAwMWHB0lqYuUwxM0KXXHUwMDE5XGK83Vx1MDAwMDVcdTAwMDP7VVHKXHUwMDE3NXfYhpj/ZrTUl4lPY1x1MDAxY1x0ea04QoQvfyhVe3496N+dXHUwMDFlW9nL6uD0rMVJZTRMOuIpeFx1MDAwZsQgXlFERFhwmmHDc9qohejY9FqI30RsWlx1MDAwMfVyrvCinlx1MDAxMr9cdTAwMDGfXGLAf1Jo2ltcdTAwMTdcdTAwMTHItVx1MDAxNODEKb18aFq1Kren9VLl5Gj/2Mn17vdcdTAwMWPSjlx1MDAxYXSQXHUwMDE0vEud0XpKjqZYl2vmXHUwMDA3vMxgzTB474RcdEr9XHRqm1x1MDAwMfxGQtOCgTFcIlwiso9/4z1heP+swDRB0VWdXHUwMDFjPFZtXFylpVx1MDAxMY+PaH1cXDua4ELv5ez+PJ09nvQ+1Ixjh4hcdTAwMTcqoyijoN6kYXB/iec0MC00OJbT8juKtsTxXHUwMDFiXGJMY1xybjczscXfmP9cbpj/rMh09FRcdTAwMDalTSot18t78fns+fAmXS5lu+o7cevopPrinCVcdTAwMWPx4MVjpjEmTFx1MDAwYsP0fjdcdTAwMWXBtkil4LZz0Md4S278JuLSXG5piUFL/1x1MDAwNvzXXHUwMDAw/Fbj0pHFXHUwMDFkOtKFXHUwMDA3SjOppSukTafTTcWLmuR6+KXHO9c36vQp6S3twaZcdTAwMDfXXHUwMDE39KtcdTAwMDZ1XG6eepDhI1x1MDAxMW6DUfDR9iRcbvRcYidEXCJqXG5cdTAwMTC8KVwiM4RnjOZcdTAwMDdcdTAwMDeOYM3Bv1x1MDAxMsHJSVRcYli5Wlxi8USHm+eBuItcdEshVVx1MDAwZjuui4jcfvNcdTAwMTPc+E2BnenIXHUwMDEzKCqI4T20/Fx1MDAwMdTQ7tjuvjxqnzfu0+Xs/lA5OJdwtFx1MDAwYpRRXGbBrWdcdTAwMTRh5Vx1MDAxZnNccmZ+XHUwMDA2XFxcdTAwMWFcdTAwMDKwXHUwMDE2nFx1MDAxM+RpSLlJ7Fx1MDAxM5FcdTAwMDFfQnPFsVaIeJNcdTAwMDFmU9NwhmngXHUwMDAxXGYvMmOZgkdRUoC/oVx1MDAxNprzv6GfMOhH7775XHTs+8agr1wig3dcdTAwMTK8V6ZB6peGPt3rPV1cdTAwMWZcdTAwMTdy99dcdTAwMDfDUnOgakfp7Chp0KdgyGOuieCUmzs+Y/ZcdTAwMWbBPFx1MDAwZSqYUSZcdTAwMTSQKFx1MDAxNf5gXHUwMDFlXHUwMDA2XHUwMDE1zcFcbtOMI3Dv8XZUXHUwMDAxhUVS4Fx1MDAwMHApXGZ8vHW0c6qAciokXHUwMDEx4Fx1MDAwN2JcdTAwMWM8r1NcdTAwMTjsNElcIqo8v7guiKq7rN5YXHUwMDBmjd44nb55cZjTfi7VTpulsLpLnFx1MDAxMVxuUYq1wFpcdTAwMDLlKlx1MDAwZuBmdZecKDLNKEbCXHUwMDFj2vx8RUQt6NfXQuloyTM/QZlbUVx1MDAwZsXlwVx1MDAwMMFGqlwiijRmbIVcdTAwMTT3eDFIZoxcdTAwMDGxXGal5viGXHRcdTAwMDE33pf7hkV0XHUwMDE00Vx1MDAxMthmn55cdTAwMDbDTJIurH1RxttLvv50NzrLl6+Zc/agbsdl2SqsXHUwMDE5WYhXSO9vXHUwMDFk0u0knrTmpHelIZA7TbLhkVx1MDAxMXlwXHUwMDEzXHUwMDA0xt7Ek0XQ6dUmuqppv9xcdTAwMWVcdTAwMWY87FUt68E9jGpGn1x1MDAxNOhgXHTaXHUwMDFjnF5cdTAwMDZWPNjvXHUwMDFln/hcdTAwMDd2XHUwMDE4yVDFlZRcdTAwMWGUPVx1MDAxNSg6PrdcdTAwMDSUtl1cdTAwMDeKTYSXXHS6iLe3gaPfXHUwMDExutTXybOJqVx1MDAwM8WIgL9A1PLncNmLt/PeUF73+vdcdTAwMDdcdTAwMGYvr+q0daY+ZLzvXHUwMDEy9lwiw82MXHUwMDA1XHUwMDAxnlx1MDAxMVju0m+sg1x1MDAwMcdcdTAwMTDoP4m5afeh1mLQLdeBXHUwMDAy8VwiXHUwMDA2ly9KtvmN+kSg/rOSbaLrQIE2XHUwMDE0XHUwMDAyb4YsXHUwMDFmmUejRut765TX0anoXHUwMDFl10dcdTAwMDfESXy2XHKmXHUwMDE5pFxiklxiXHUwMDBicOClkH7M01xmXHUwMDA3x4QpplxynPB2ML+RdFx1MDAxYlx1MDAxMFx1MDAxMMlMq6zfkP9cbpD/tHxcdTAwMWJcdTAwMTZ5+Fx1MDAwZXqHgnGxQlxuvVu4qN3Uz5xDJJ230lx1MDAxZVx1MDAxZpdfP9bieZeOsel/hYlpyFx1MDAwZreX+KvCgPoznFOikaBae0yejZL8XHUwMDA2km0oyFxyx94m7b/xnmC8f1KuXHKNmekrXHUwMDEwhs9CbHm8X+VPJjX3Yb/Salx1MDAwZeoj5/uD2L+zXHUwMDEyjncwn8xhnDSeutZ+gqcyXHUwMDAzLj5FJkDPwVx1MDAwZdiSUb+JXFxcdTAwMWIzXHUwMDBlmCuOfiP+iyD+c5JtMIrr41x1MDAwNp/IV5ni7cqDYb/YvLxp1+lV+ea8VVx1MDAxZoqET/E2XHSzUimBhCBcdTAwMTSDUe9jeIoyXHUwMDE0kelkXHUwMDA1YjIjWHRcdTAwMWa3TTdTVVx1MDAxOSVMTlx1MDAxZoVNp6B7glxyXG6FadpGI1x1MDAwNk9+tV6qt6J+v3/dmrw6XHUwMDE3lVu8l2+MXHUwMDA2XHUwMDA172hWT9tSXHUwMDA0hjA4MFx1MDAxYaxe+IUoT95E6v1cdTAwMDTNt3H000/Qtqc85l6dXHUwMDBlXG7OitpcIrK3ecw5XHUwMDE5Nlx1MDAwN0fTaXFLa4tq5ShbUK9cdTAwMDf5nkOzeTt9d1ffcLR/XHUwMDFiszBNtydmtKI0rXz9XHUwMDA1N0JmXGJcdTAwMDbtbU6rXHUwMDEwlWtcdTAwMTbV1qwnMFx1MDAwMIPaQoapi8AkMa5N1rBcXJiLd00rt5eHdUzvSu3X03Yn9/J85O6O4N+H/83u5bZcdTAwMWKm5y3XeuyUKlx1MDAwZSzNXHUwMDE5hDdMj5rzt86opthJf/5FfVxmopREnscpJjRcdTAwMDONuTxCpXN6fT/uXHUwMDE2nrMn7ef7boFkc9ZmS2A3j1BJM9RcdTAwMWN2gDWFKPYnz1xuXHUwMDA1z4ItxSj8j8uYgWjLdHGJwmfYxI2Q+ZpSc0zMsJNcdTAwMDVcdTAwMDB93Xt+7Vx1MDAxZVxcXd30LkfXo/O3QXGkJ59cdTAwMDDQ3c2TLp3nXHUwMDFlO1lcdTAwMDDHJCnonFvRx6DJeHSPJZNdh4T2dFx0XoTN10b2Kdt76uM7UnjDN+Tg7vvbccKxicHY1lJLzMQ0oVx1MDAwM1x1MDAwN8JpKoNB3ChcdTAwMDPDzVx1MDAxNKmvXHUwMDE3UIukT7lcdTAwMWM8qakuQnLRsZg7umq278tX6dvexZFCXHUwMDE3R8fd5slfXHUwMDFhnnmQy4pcdTAwMTlcdTAwMDD12NnvXHUwMDAwTGwv5D6VQ0NcdTAwMTb2MbB6o6zB0y7GOZFq+fFUxZP625CKwtP3u161/Xx2m7fuy1x0XHUwMDA3a1qIXGZmlJusdI05oNbHpVx1MDAwNGck4MuYmdQ7THWTTFxuXHUwMDFlXlx1MDAxMKs4ZCi8XHSNKEHEKr7wh1D4fk1IQtf5222pcVxcJlx1MDAwZW5cdTAwMTZRvqhcdG3UvYVrKX9E5v2ZJeZXXHUwMDE5RzdoI3+b3bNNXCK8Mey4KbfRty13kLI61cdOXHUwMDFi0JSCJVmpkVx1MDAwM3ZqtdtcdTAwMDZMplx1MDAwNz274tScymOn27P706Fwg9Tfe86o6/752LHHPdhg+89UXHUwMDEzXHUwMDA0PF1pwFx1MDAxNeZRt5L538eIKXc7XHUwMDFlr72L7/kxXHUwMDA1pKNb2Vx1MDAwMOqINlklS+uf1lxyLu5dYfH0bD2fPJRK5b6LUdL1XHUwMDBmIaYlo5lNg5lUhNF5Z1uQjFx1MDAwMOOZUjPoyEzNjlRAS03tjlJAXHUwMDFlf2qmgFBQXHUwMDAxIarB74hoxPbF9U+MjbEl/VNcdTAwMDWFXHUwMDAwUp8y8+5bk8eOgTQ8NbRa8E6AUqtcdTAwMDVcdTAwMWEg9VxiW1xyiLZcdTAwMDeP31x1MDAxZTt9+2Xo9J1OPVx1MDAwNVx1MDAxMHbaVuux01x1MDAxOLatTspcdTAwMDTm6ibIXHUwMDE3pnD0bvXNVr5XrIKJXHUwMDBl/XtrPP0mjlx1MDAwMrk3xL+8P1JzuXiRx0pPusguO6L85JzvJTv2n9ZcIsNcdTAwMTAzXHUwMDA1dlx1MDAxNJniNX80j+uMJEBJZp5cdTAwMWZCNOZ8f/eD1Fx1MDAxNEeacbySwfP5wf/oOrqoY4Glp5mlwbekhCtiXHUwMDBlc7iGu1x1MDAxM15WI8FORJhcdTAwMGKhXHUwMDA0fK+Awv3Kof/l55n98fNccr9ZvV7Jhc1+34FvI8d+3Vx1MDAwYmPI6Y9RNtObZVx1MDAxMG1PWew/f/zn/1x1MDAwMVxyXHKTXGYifQ==Security Content Yara Kestrel STIX CACAO Sigma ML Models Security Data Fabric codify detections (DaC) via collaborative domain and data knowledge develop models with native data access, rich typing and high bandwidth automatic operationalization Data Science Workbench R Jupyter ML/AI Framework Data Sources & Infrastructure Endpoint Network Cloud autonomous response via API calls visibility as high-volume telemetry SOC Workbench Investigation Case Management Data Scientist SOC Analyst Detection Engineer hunt threats and mine data via domain-specific operations (pivot, explore, kill-chain, etc.) deliver highly contextualized alert "stories" requiring minimal human triaging
Standardized data access : unified access to security content, event logs,
and other high-volume telemetry (e.g., network traffic) streamlines workflows
across the board. Triaging accuracy and hunting efficiency increases because
contextualization becomes easier. End-to-end detection engineering becomes
faster because feature extraction, model validation, and generation of
security-content uses a single data interface. Response becomes more targeted
and possible to automate when more data for decision support is present.Improved collaboration : given the drastic talent shortage, productivity
in the SOC is key. In particular, this means efficient collaboration between
the central roles . When SOC Analyst,
Detection Engineer, and Data Scientist can work with the same interface,
their throughput improves across the board, reducing friction and improving
all central MTT* metrics, e.g.,
mean-time-to-{triage,detect,investigate,respond}.Sustainable architecture : when the fabric facilitates the use cases,
onboarding new security tools becomes a matter of telling the fabric how to
expose itself. XDR is no longer a product but an outcome. Likewise, SIEM is a
process rather than a monolith data silo. The byproduct of this indirection
is linear incremental deployability rather than quadratic overhead,
meaning, you only have to onboard a tool once to the fabric, and then all
others can interact with it. This also makes for easier benchmarking of
security tools under evaluation by feeding both the same data feed.
For example, determining which tools have the lowest false-postive rate can
greately inform your investment decision. It also simplifies switching from a
legacy tool to a new one, as the new one can run ramp up in parallel before
turning off the old one. Now we're back to best-of-breed with full control.Related is the concept of a security data lake . The difference is that the
fabric goes beyond analytic processing of security data and enables use cases
across tools by providing a standardized communication medium. The fabric may
leverage one or more lakes, but the primary focus is on providing unified access
to federated security services.